DG-TTA: Out-of-domain medical image segmentation through Domain Generalization and Test-Time Adaptation
Project description
DG-TTA: Out-of-domain medical image segmentation through Domain Generalization and Test-Time Adaptation
Installation
We have a package available on pypi. Just run:
pip3 install dg-tta
Optionally, you can install wandb
to log results to your dashboard.
nnUNet dependency
The nnUNet framework will be installed automatically alongside DG-TTA. Please refer to https://github.com/MIC-DKFZ/nnUNet to prepare your datasets. DG-TTA needs datasets to be prepared according to the v2 version of nnUNet.
Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.
Usage
Run dgtta -h
from your commandline interface to get started.
There are four basic commands available:
dgtta inject_trainers
: This will copy our specialized trainers with DG techniques and make them available in the nnUNet framework. Available trainers are:
- nnUNetTrainer_GIN (optimized for 1.5mm spacing)
- nnUNetTrainer_MIND (optimized for 1.5mm spacing)
- nnUNetTrainer_GIN_MIND (optimized for 1.5mm spacing)
- nnUNetTrainer_GIN_MultiRes (optimized for 1.5, 3.0, 6.0 and 9.0mm spacing)
- nnUNetTrainer_MIND_MultiRes (optimized for 1.5, 3.0, 6.0 and 9.0mm spacing)
- nnUNetTrainer_GIN_MIND_MultiRes (optimized for 1.5, 3.0, 6.0 and 9.0mm spacing)
dgtta pretrain
: Use this command to pre-train a model on a (CT) dataset with one of our trainers.dgtta prepare_tta
: After pre-training, prepare TTA by specifying the source and target datasetdgtta run_tta
: After preparation, you can run TTA on a target (MRI) dataset and evaluate how well the model bridged the domain gap.- If you want to perform TTA without pre-training, you can skip step 2) and use our pre-trained models (pre-trained on the TotalSegmentator dataset dataset)
Examples
Prepare a paths.sh
file which exports the following variables:
#!/usr/bin/bash
export nnUNet_raw="/path/to/dir"
export nnUNet_preprocessed="/path/to/dir"
export nnUNet_results="/path/to/dir"
export DG_TTA_ROOT="/path/to/dir"
- Use case: Get to know the tool
source paths.sh && dgtta
- Use case: Pre-train a GIN_MIND model on dataset 802 in nnUNet
source paths.sh && dgtta inject_trainers --num_epochs 150
source paths.sh && dgtta pretrain -tr nnUNetTrainer_GIN_MIND 802 3d_fullres 0
- Use case: Run TTA on dataset 678 for the pre-trained model of step 2)
- Inject trainers:
source paths.sh && dgtta inject_trainers
- Prepare TTA:
source paths.sh && dgtta prepare_tta 802 678 --pretrainer nnUNetTrainer_GIN --pretrainer nnUNetTrainer_GIN_MIND --pretrainer_config 3d_fullres --pretrainer_fold 0 --tta_dataset_bucket imagesTrAndTs
- Now inspect and change the
plan.json
(see console output of preparation). E.g. remove some samples on which you do not want to perform TTA on, change the number of TTA epochs etc. - Also inspect the notebook inside the plans folder and visualize the dataset orientation. Modify functions of
modifier_functions.py
as explained in the notebook to get the input/output orientation of the TTA data right. - Run TTA:
source paths.sh && dgtta run_tta 802 678 --pretrainer nnUNetTrainer_GIN_MIND --pretrainer_config 3d_fullres --pretrainer_fold 0
- Find the results inside the DG_TTA_ROOT directory
- Use case: Run TTA on dataset 678 with our pre-trained GIN_MIND model:
- Inject trainers:
source paths.sh && dgtta inject_trainers
- Prepare TTA:
source paths.sh && dgtta prepare_tta TS104_GIN_MIND 678 --tta_dataset_bucket imagesTrAndTs
- Run TTA:
source paths.sh && dgtta run_tta TS104_GIN_MIND 678
- All of our pre-trained models (use in case 4):
- TS104_GIN
- TS104_MIND
- TS104_GIN_MIND
- TS104_GIN_MultiRes
- TS104_MIND_MultiRes
- TS104_GIN_MIND_MultiRes
Please refer to our work
If you used DG-TTA, please cite:
Weihsbach, C., Kruse, C. N., Bigalke, A., & Heinrich, M. P. (2023). DG-TTA: Out-of-domain medical image segmentation through Domain Generalization and Test-Time Adaptation. arXiv preprint arXiv:2312.06275.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file dg_tta-1.0.18.tar.gz
.
File metadata
- Download URL: dg_tta-1.0.18.tar.gz
- Upload date:
- Size: 250.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.6.1 CPython/3.9.18 Linux/5.4.0-92-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 030b59541562463fd0227aaa3c88c9b80d7ea5654b8904759e9c1429df7b241c |
|
MD5 | 219ec53edf20db1c32d623f3feb5b62d |
|
BLAKE2b-256 | 002c3241946be844c9ac149870ba0ef8245c174cd5dfc082cdbbdd2e6857c7d2 |
File details
Details for the file dg_tta-1.0.18-py3-none-any.whl
.
File metadata
- Download URL: dg_tta-1.0.18-py3-none-any.whl
- Upload date:
- Size: 257.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.6.1 CPython/3.9.18 Linux/5.4.0-92-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 97c49904455e471c5767f448fa4e977bfa7efdc6417865fa6f2b7a7de9243444 |
|
MD5 | 54c4013f540d62c35045df92194c4f98 |
|
BLAKE2b-256 | 2428afa2b4a8313b679aaeb9644ad15a29d3435601a8e1e5f4da5bbb8e6ee4b5 |