Skip to main content

A convenient and user-friendly anime-style image data processing library that integrates various advanced anime-style image processing models.

Project description

imgutils

PyPI PyPI - Python Version Loc Comments

Code Test Package Release codecov

Discord GitHub Org's stars GitHub stars GitHub forks GitHub commit activity GitHub issues GitHub pulls Contributors GitHub license

A convenient and user-friendly anime-style image data processing library that integrates various advanced anime-style image processing models.

Installation

You can simply install it with pip command line from the official PyPI site.

pip install dghs-imgutils

If your operating environment includes a available GPU, you can use the following installation command to achieve higher performance:

pip install dghs-imgutils[gpu]

For more information about installation, you can refer to Installation.

Supported or Developing Features

imgutils also includes many other features besides that. For detailed descriptions and examples, please refer to the official documentation. Here, we won't go into each of them individually.

Tachie(差分) Detection and Clustering

For the dataset, we need to filter the differences between the tachie(差分). As shown in the following picture

tachie

We can use lpips_clustering to cluster such situations as shown below

from imgutils.metrics import lpips_clustering

images = [f'lpips/{i}.jpg' for i in range(1, 10)]
print(images)
# ['lpips/1.jpg', 'lpips/2.jpg', 'lpips/3.jpg', 'lpips/4.jpg', 'lpips/5.jpg', 'lpips/6.jpg', 'lpips/7.jpg', 'lpips/8.jpg', 'lpips/9.jpg']
print(lpips_clustering(images))  # -1 means noises, the same as that in sklearn
# [0, 0, 0, 1, 1, -1, -1, -1, -1]

Contrastive Character Image Pretraining

We can use imgutils to extract features from anime character images (containing only a single character), calculate the visual dissimilarity between two characters, and determine whether two images depict the same character. We can also perform clustering operations based on this metric, as shown below

ccip

from imgutils.metrics import ccip_difference, ccip_clustering

# same character
print(ccip_difference('ccip/1.jpg', 'ccip/2.jpg'))  # 0.16583099961280823

# different characters
print(ccip_difference('ccip/1.jpg', 'ccip/6.jpg'))  # 0.42947039008140564
print(ccip_difference('ccip/1.jpg', 'ccip/7.jpg'))  # 0.4037521779537201
print(ccip_difference('ccip/2.jpg', 'ccip/6.jpg'))  # 0.4371533691883087
print(ccip_difference('ccip/2.jpg', 'ccip/7.jpg'))  # 0.40748104453086853
print(ccip_difference('ccip/6.jpg', 'ccip/7.jpg'))  # 0.392294704914093

images = [f'ccip/{i}.jpg' for i in range(1, 13)]
print(images)
# ['ccip/1.jpg', 'ccip/2.jpg', 'ccip/3.jpg', 'ccip/4.jpg', 'ccip/5.jpg', 'ccip/6.jpg', 'ccip/7.jpg', 'ccip/8.jpg', 'ccip/9.jpg', 'ccip/10.jpg', 'ccip/11.jpg', 'ccip/12.jpg']
print(ccip_clustering(images, min_samples=2))  # few images, min_sample should not be too large
# [0, 0, 0, 3, 3, 3, 1, 1, 1, 1, 2, 2]

For more usage, please refer to official documentation of CCIP.

Object Detection

Currently, object detection is supported for anime heads and person, as shown below

  • Face Detection

face detection

  • Head Detection

head detection

  • Person Detection

person detection

Based on practical tests, head detection currently has a very stable performance and can be used for automation tasks. However, person detection is still being further iterated and will focus on enhancing detection capabilities for artistic illustrations in the future.

Edge Detection / Lineart Generation

Anime images can be converted to line drawings using the model provided by patrickvonplaten/controlnet_aux, as shown below.

edge example

It is worth noting that the lineart model may consume more computational resources, while canny is the fastest but has average effect. Therefore, lineart_anime may be the most balanced choice in most cases.

Monochrome Image Detection

When filtering the crawled images, we need to remove monochrome images. However, monochrome images are often not simply composed of grayscale colors and may still contain colors, as shown by the first two rows of six images in the figure below

monochrome example

We can use is_monochrome to determine whether an image is monochrome, as shown below:

from imgutils.validate import is_monochrome

print(is_monochrome('mono/1.jpg'))  # monochrome images
# True
print(is_monochrome('mono/2.jpg'))
# True
print(is_monochrome('mono/3.jpg'))
# True
print(is_monochrome('mono/4.jpg'))
# True
print(is_monochrome('mono/5.jpg'))
# True
print(is_monochrome('mono/6.jpg'))
# True
print(is_monochrome('colored/7.jpg'))  # colored images
# False
print(is_monochrome('colored/8.jpg'))
# False
print(is_monochrome('colored/9.jpg'))
# False
print(is_monochrome('colored/10.jpg'))
# False
print(is_monochrome('colored/11.jpg'))
# False
print(is_monochrome('colored/12.jpg'))
# False

For more details, please refer to the official documentation .

Truncated Image Check

The following code can be used to detect incomplete image files (such as images interrupted during the download process):

from imgutils.validate import is_truncated_file

if __name__ == '__main__':
    filename = 'test_jpg.jpg'
    if is_truncated_file(filename):
        print('This image is truncated, you\'d better '
              'remove this shit from your dataset.')
    else:
        print('This image is okay!')

Image Tagging

The imgutils library integrates various anime-style image tagging models, allowing for results similar to the following:

tagging demo images

The ratings, features, and characters in the image can be detected, like this:

import os
from imgutils.tagging import get_wd14_tags

rating, features, chars = get_wd14_tags('skadi.jpg')
print(rating)
# {'general': 0.0011444687843322754, 'sensitive': 0.8876402974128723, 'questionable': 0.106781005859375, 'explicit': 0.000277101993560791}
print(features)
# {'1girl': 0.997527003288269, 'solo': 0.9797663688659668, 'long_hair': 0.9905703663825989, 'breasts': 0.9761719703674316,
#  'looking_at_viewer': 0.8981098532676697, 'bangs': 0.8810765743255615, 'large_breasts': 0.9498510360717773,
#  'shirt': 0.8377365469932556, 'red_eyes': 0.945058286190033, 'gloves': 0.9457170367240906, 'navel': 0.969594419002533,
#  'holding': 0.7881088852882385, 'hair_between_eyes': 0.7687551379203796, 'very_long_hair': 0.9301245212554932,
#  'standing': 0.6703325510025024, 'white_hair': 0.5292627811431885, 'short_sleeves': 0.8677047491073608,
#  'grey_hair': 0.5859264731407166, 'thighs': 0.9536856412887573, 'cowboy_shot': 0.8056888580322266,
#  'sweat': 0.8394746780395508, 'outdoors': 0.9473626613616943, 'parted_lips': 0.8986269235610962,
#  'sky': 0.9385137557983398, 'shorts': 0.8408567905426025, 'alternate_costume': 0.4245271384716034,
#  'day': 0.931140661239624, 'black_gloves': 0.8830795884132385, 'midriff': 0.7279844284057617,
#  'artist_name': 0.5333830714225769, 'cloud': 0.64717698097229, 'stomach': 0.9516432285308838,
#  'blue_sky': 0.9655293226242065, 'crop_top': 0.9485014081001282, 'black_shirt': 0.7366660833358765,
#  'short_shorts': 0.7161656618118286, 'ass_visible_through_thighs': 0.5858667492866516,
#  'black_shorts': 0.6186309456825256, 'thigh_gap': 0.41193312406539917, 'no_headwear': 0.467605859041214,
#  'low-tied_long_hair': 0.36282333731651306, 'sportswear': 0.3756745457649231, 'motion_blur': 0.5091936588287354,
#  'baseball_bat': 0.951993465423584, 'baseball': 0.5634750723838806, 'holding_baseball_bat': 0.8232709169387817}
print(chars)
# {'skadi_(arknights)': 0.9869340658187866}

rating, features, chars = get_wd14_tags('hutao.jpg')
print(rating)
# {'general': 0.49491602182388306, 'sensitive': 0.5193622708320618, 'questionable': 0.003406703472137451,
#  'explicit': 0.0007208287715911865}
print(features)
# {'1girl': 0.9798132181167603, 'solo': 0.8046203851699829, 'long_hair': 0.7596215009689331,
#  'looking_at_viewer': 0.7620116472244263, 'blush': 0.46084529161453247, 'smile': 0.48454540967941284,
#  'bangs': 0.5152207016944885, 'skirt': 0.8023070096969604, 'brown_hair': 0.8653596639633179,
#  'hair_ornament': 0.7201820611953735, 'red_eyes': 0.7816740870475769, 'long_sleeves': 0.697688639163971,
#  'twintails': 0.8974947333335876, 'school_uniform': 0.7491052746772766, 'jacket': 0.5015512704849243,
#  'flower': 0.6401398181915283, 'ahoge': 0.43420469760894775, 'pleated_skirt': 0.4528769850730896,
#  'outdoors': 0.5730487704277039, 'tongue': 0.6739872694015503, 'hair_flower': 0.5545973181724548,
#  'tongue_out': 0.6946243047714233, 'bag': 0.5487751364707947, 'symbol-shaped_pupils': 0.7439308166503906,
#  'blazer': 0.4186026453971863, 'backpack': 0.47378358244895935, ':p': 0.4690653085708618, 'ghost': 0.7565015554428101}
print(chars)
# {'hu_tao_(genshin_impact)': 0.9262397289276123, 'boo_tao_(genshin_impact)': 0.942080020904541}

We currently integrate the following tagging models:

In addition, if you need to convert the dict-formatted data mentioned above into the text format required for image training and tagging, you can also use the tags_to_text function (see the link here) for formatting, as shown below:

from imgutils.tagging import tags_to_text

# a group of tags
tags = {
    'panty_pull': 0.6826801300048828,
    'panties': 0.958938717842102,
    'drinking_glass': 0.9340789318084717,
    'areola_slip': 0.41196826100349426,
    '1girl': 0.9988248348236084
}

print(tags_to_text(tags))
# '1girl, panties, drinking_glass, panty_pull, areola_slip'
print(tags_to_text(tags, use_spaces=True))
# '1girl, panties, drinking glass, panty pull, areola slip'
print(tags_to_text(tags, include_score=True))
# '(1girl:0.999), (panties:0.959), (drinking_glass:0.934), (panty_pull:0.683), (areola_slip:0.412)'

Character Extraction

When we need to extract the character parts from anime images, we can use the segment-rgba-with-isnetis function for extraction and obtain an RGBA format image (with the background part being transparent), just like the example shown below.

isnetis

from imgutils.segment import segment_rgba_with_isnetis

mask_, image_ = segment_rgba_with_isnetis('hutao.png')
image_.save('hutao_seg.png')

mask_, image_ = segment_rgba_with_isnetis('skadi.jpg')
image_.save('skadi_seg.png')

This model can be found at https://huggingface.co/skytnt/anime-seg .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dghs_imgutils-0.7.0.tar.gz (327.9 kB view details)

Uploaded Source

Built Distribution

dghs_imgutils-0.7.0-py3-none-any.whl (370.7 kB view details)

Uploaded Python 3

File details

Details for the file dghs_imgutils-0.7.0.tar.gz.

File metadata

  • Download URL: dghs_imgutils-0.7.0.tar.gz
  • Upload date:
  • Size: 327.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for dghs_imgutils-0.7.0.tar.gz
Algorithm Hash digest
SHA256 572d1e75b46d762d124f998e7c3294a66f29ce7d2dbc8a6560d7a2026526de8d
MD5 03aca3e663d6a9a5b5bdfba7b8fbdc7e
BLAKE2b-256 dec1dda5a2db455d8226ddecf5751be49e352e34dcc5faec0c04f0e2dace38ba

See more details on using hashes here.

File details

Details for the file dghs_imgutils-0.7.0-py3-none-any.whl.

File metadata

File hashes

Hashes for dghs_imgutils-0.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 29cd64de355254ab46b25a2e5056abb911273e3191e8f8ecdb9ee8caa4861c86
MD5 b6f53c84c513251824cea6473d2e726b
BLAKE2b-256 28148007cfe44a537c6ab4a76e0e41bd9df9b62686e64208a06144fbc3fd9fe9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page