Skip to main content

A Modified version of scikit-optimize a Sequential model-based optimization toolbox for DeepHyper.

Project description

Logo

pypi conda Travis Status CircleCI Status binder gitter Zenodo DOI

Scikit-Optimize

Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements several methods for sequential model-based optimization. skopt aims to be accessible and easy to use in many contexts.

The library is built on top of NumPy, SciPy and Scikit-Learn.

We do not perform gradient-based optimization. For gradient-based optimization algorithms look at scipy.optimize here.

Approximated objective

Approximated objective function after 50 iterations of gp_minimize. Plot made using skopt.plots.plot_objective.

Install

scikit-optimize requires

  • Python >= 3.6

  • NumPy (>= 1.13.3)

  • SciPy (>= 0.19.1)

  • joblib (>= 0.11)

  • scikit-learn >= 0.20

  • matplotlib >= 2.0.0

You can install the latest release with:

pip install scikit-optimize

This installs an essential version of scikit-optimize. To install scikit-optimize with plotting functionality, you can instead do:

pip install 'scikit-optimize[plots]'

This will install matplotlib along with scikit-optimize.

In addition there is a conda-forge package of scikit-optimize:

conda install -c conda-forge scikit-optimize

Using conda-forge is probably the easiest way to install scikit-optimize on Windows.

Getting started

Find the minimum of the noisy function f(x) over the range -2 < x < 2 with skopt:

import numpy as np
from skopt import gp_minimize

def f(x):
    return (np.sin(5 * x[0]) * (1 - np.tanh(x[0] ** 2)) +
            np.random.randn() * 0.1)

res = gp_minimize(f, [(-2.0, 2.0)])

For more control over the optimization loop you can use the skopt.Optimizer class:

from skopt import Optimizer

opt = Optimizer([(-2.0, 2.0)])

for i in range(20):
    suggested = opt.ask()
    y = f(suggested)
    opt.tell(suggested, y)
    print('iteration:', i, suggested, y)

Read our introduction to bayesian optimization and the other examples.

Development

The library is still experimental and under heavy development. Checkout the next milestone for the plans for the next release or look at some easy issues to get started contributing.

The development version can be installed through:

git clone https://github.com/scikit-optimize/scikit-optimize.git
cd scikit-optimize
pip install -e.

Run all tests by executing pytest in the top level directory.

To only run the subset of tests with short run time, you can use pytest -m 'fast_test' (pytest -m 'slow_test' is also possible). To exclude all slow running tests try pytest -m 'not slow_test'.

This is implemented using pytest attributes. If a tests runs longer than 1 second, it is marked as slow, else as fast.

All contributors are welcome!

Making a Release

The release procedure is almost completely automated. By tagging a new release travis will build all required packages and push them to PyPI. To make a release create a new issue and work through the following checklist:

  • update the version tag in __init__.py

  • update the version tag mentioned in the README

  • check if the dependencies in setup.py are valid or need unpinning

  • check that the doc/whats_new/v0.X.rst is up to date

  • did the last build of master succeed?

  • create a new release

  • ping conda-forge

Before making a release we usually create a release candidate. If the next release is v0.X then the release candidate should be tagged v0.Xrc1 in __init__.py. Mark a release candidate as a “pre-release” on GitHub when you tag it.

Commercial support

Feel free to get in touch if you need commercial support or would like to sponsor development. Resources go towards paying for additional work by seasoned engineers and researchers.

Made possible by

The scikit-optimize project was made possible with the support of

Wild Tree Tech NYU Center for Data Science NSF Northrop Grumman

If your employer allows you to work on scikit-optimize during the day and would like recognition, feel free to add them to the “Made possible by” list.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dh-scikit-optimize-0.9.6.tar.gz (397.1 kB view details)

Uploaded Source

Built Distribution

dh_scikit_optimize-0.9.6-py2.py3-none-any.whl (103.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file dh-scikit-optimize-0.9.6.tar.gz.

File metadata

  • Download URL: dh-scikit-optimize-0.9.6.tar.gz
  • Upload date:
  • Size: 397.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for dh-scikit-optimize-0.9.6.tar.gz
Algorithm Hash digest
SHA256 53c2985ff1684e367fd4c14e199125cb34cbc0675f69769fc767ee22e4dceaf1
MD5 5c7b74fed382ed0d176716c1b3525151
BLAKE2b-256 99874811975caa5d1ed9ec1d9588bfb391ae5bd0b9174ce1c6ac29e7def70335

See more details on using hashes here.

File details

Details for the file dh_scikit_optimize-0.9.6-py2.py3-none-any.whl.

File metadata

  • Download URL: dh_scikit_optimize-0.9.6-py2.py3-none-any.whl
  • Upload date:
  • Size: 103.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for dh_scikit_optimize-0.9.6-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 a15a580d641175e9a3aa8d813601f20465588ed1a081ed5115698e8bcde95f55
MD5 69de86bb1aa6d956afcd9e11435fb357
BLAKE2b-256 550631e8fd175cc3fc4da7a3682df1f1ce735e9388aaf0a0e98e1a64e31fc41a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page