Skip to main content

Deep Insight And Neural Network Analysis

Project description

build Documentation Status workflow scc badge CII Best Practices fair-software.eu status

Logo_ER10

Deep Insight And Neural Network Analysis

DIANNA is a Python package that brings explainable AI (XAI) to your research project. It wraps carefully selected XAI methods in a simple, uniform interface. It's built by, with and for (academic) researchers and research software engineers working on machine learning projects.

Why DIANNA?

DIANNA software is addressing needs of both (X)AI researchers and mostly the various domains scientists who are using or will use AI models for their research without being experts in (X)AI. DIANNA is future-proof: one of the very few XAI library supporting the Open Neural Network Exchange (ONNX) format.

After studying the vast XAI landscape we have made choices in the parts of the XAI Taxonomy on which methods, data modalities and problems types to focus. Our choices, based on the largest usage in scientific literature, are shown graphically in the XAI taxonomy below:

XAI_taxonomy

The key points of DIANNA:

  • Provides an easy-to-use interface for non (X)AI experts
  • Implements well-known XAI methods (LIME, RISE and Kernal SHAP) chosen by systematic and objective evaluation criteria
  • Supports the de-facto standard format for neural network models - ONNX.
  • Includes clear instructions for export/conversions from Tensorflow, Pytorch, Keras and scikit-learn to ONNX.
  • Supports images, text and time series data modalities. Tabular data and even embeddings support is planned.
  • Comes with simple intuitive image and text benchmarks
  • Easily extendable to other XAI methods

For more information on the unique strengths of DIANNA with comparison to other tools, please see the context landscape.

Installation

workflow pypi badge supported python versions

DIANNA can be installed from PyPI using pip on any of the supported Python versions (see badge):

python3 -m pip install dianna

To install the most recent development version directly from the GitHub repository run:

python3 -m pip install git+https://github.com/dianna-ai/dianna.git

If you get an error related to OpenMP when importing dianna, have a look at this issue for possible workarounds.

Pre-requisites only for Macbook Pro with M1 Pro chip users

  • To install TensorFlow you can follow this tutorial.

  • To install TensorFlow Addons you can follow these steps. For further reading see this issue. Note that this temporary solution works only for macOS versions >= 12.0. Note that this step may have changed already, see https://github.com/dianna-ai/dianna/issues/245.

  • Before installing DIANNA, comment tensorflow requirement in setup.cfg file (tensorflow package for M1 is called tensorflow-macos).

Getting started

You need:

You get:

  • a relevance map overlayed over the data item

In the library's documentation, the general usage is explained in How to use DIANNA

Demo movie

Watch the video on YouTube

Text example:

model_path = 'your_model.onnx'  # model trained on text
text = 'The movie started great but the ending is boring and unoriginal.'

Which of your model's classes do you want an explanation for?

labels = [positive_class, negative_class]

Run using the XAI method of your choice, for example LIME:

explanation = dianna.explain_text(model_path, text, 'LIME')
dianna.visualization.highlight_text(explanation[labels.index(positive_class)], text)

image

Image example:

model_path = 'your_model.onnx'  # model trained on images
image = PIL.Image.open('your_image.jpeg')

Tell us what label refers to the channels, or colors, in the image.

axis_labels = {0: 'channels'}

Which of your model's classes do you want an explanation for?

labels = [class_a, class_b]

Run using the XAI method of your choice, for example RISE:

explanation = dianna.explain_image(model_path, image, 'RISE', axis_labels=axis_labels, labels=labels)
dianna.visualization.plot_image(explanation[labels.index(class_a)], original_data=image)

image

Dashboard

Explore your trained model explained using the DIANNA dashboard. Click here for more information.

Dianna dashboard screenshot

Datasets

DIANNA comes with simple datasets. Their main goal is to provide intuitive insight into the working of the XAI methods. They can be used as benchmarks for evaluation and comparison of existing and new XAI methods.

Images

Dataset Description Examples Generation
Binary MNIST mnist_zero_and_one_half_size Greyscale images of the digits "1" and "0" - a 2-class subset from the famous MNIST dataset for handwritten digit classification. BinaryMNIST Binary MNIST dataset generation
Simple Geometric (circles and triangles) Simple Geometric Logo Images of circles and triangles for 2-class geometric shape classificaiton. The shapes of varying size and orientation and the background have varying uniform gray levels. SimpleGeometric Simple geometric shapes dataset generation
Simple Scientific (LeafSnap30)LeafSnap30 Logo Color images of tree leaves - a 30-class post-processed subset from the LeafSnap dataset for automatic identification of North American tree species. LeafSnap LeafSnap30 dataset generation

Text

Dataset Description Examples Generation
Stanford sentiment treebanknlp-logo_half_size Dataset for predicting the sentiment, positive or negative, of movie reviews. This movie was actually neither that funny, nor super witty. Sentiment treebank

Time series

Dataset Description Examples Generation
Coffee dataset Coffe Logo Food spectographs time series dataset for a two class problem to distinguish between Robusta and Arabica coffee beans. example image data source
Weather dataset Weather Logo The light version of the weather prediciton dataset, which contains daily observations (89 features) for 11 European locations through the years 2000 to 2010. example image data source

ONNX models

We work with ONNX! ONNX is a great unified neural network standard which can be used to boost reproducible science. Using ONNX for your model also gives you a boost in performance! In case your models are still in another popular DNN (deep neural network) format, here are some simple recipes to convert them:

More converters with examples and tutorials can be found on the ONNX tutorial page.

And here are links to notebooks showing how we created our models on the benchmark datasets:

Images

Models Generation
Binary MNIST model Binary MNIST model generation
Simple Geometric model Simple geometric shapes model generation
Simple Scientific model LeafSnap30 model generation

Text

Models Generation
Movie reviews model Stanford sentiment treebank model generation

Time series

Models Generation
Coffee model Coffee model generation
Season prediction model Season prediction model generation

We envision the birth of the ONNX Scientific models zoo soon...

Tutorials

DIANNA supports different data modalities and XAI methods. The table contains links to the relevant XAI method's papers (for some explanatory videos on the methods, please see tutorials). The DIANNA tutorials cover each supported method and data modality on a least one dataset. Our future plans to expand DIANNA with more data modalities and XAI methods are given in the ROADMAP.

Data \ XAI RISE LIME KernelSHAP
Images :white_check_mark: :white_check_mark: :white_check_mark:
Text :white_check_mark: :white_check_mark:
Timeseries :white_check_mark: :white_check_mark:
Embedding planned planned planned
Tabular planned planned planned
Graphs* work in progress work in progress work in progress

LRP and PatternAttribution also feature in the top 5 of our thoroughly evaluated XAI methods using objective criteria (details in coming blog-post). Contributing by adding these and more (new) post-hoc explainability methods on ONNX models is very welcome!

Reference documentation

For detailed information on using specific DIANNA functions, please visit the documentation page hosted at Readthedocs.

Contributing

If you want to contribute to the development of DIANNA, have a look at the contribution guidelines. See our developer documentation for information on developer installation, running tests, generating documentation, versioning and making a release.

How to cite us

DOI RSD

If you use this package for your scientific work, please consider citing it as:

Ranguelova, E., Bos, P., Liu, Y., Meijer, C., Oostrum, L., Crocioni, G., Ootes, L., Chandramouli, P., Jansen, A., Smeets, S. (2023). dianna (*[VERSION YOU USED]*). Zenodo. https://zenodo.org/record/5592606

See also the Zenodo page for exporting the citation to BibTteX and other formats.

Credits

This package was created with Cookiecutter and the NLeSC/python-template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dianna-1.0.0.tar.gz (23.9 MB view details)

Uploaded Source

Built Distribution

dianna-1.0.0-py3-none-any.whl (23.9 MB view details)

Uploaded Python 3

File details

Details for the file dianna-1.0.0.tar.gz.

File metadata

  • Download URL: dianna-1.0.0.tar.gz
  • Upload date:
  • Size: 23.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for dianna-1.0.0.tar.gz
Algorithm Hash digest
SHA256 4ecd3ebaf861751f2ee167aecdbdbbea1f586ccf4037e89ecd8b7675aff4f34c
MD5 ccd7e79f214365d064fc037b7140582c
BLAKE2b-256 276efb308fea39eac20c7aaffde3d2f3dce2f504877cfbd51044a86768126195

See more details on using hashes here.

File details

Details for the file dianna-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: dianna-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 23.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for dianna-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cce6ca931e4fe01c5f5ac3aa5e10dc28456904b3e926ed68e84d7e33a8ad4acd
MD5 af453a3f2be561a0b2cd9c9fb11e4b25
BLAKE2b-256 49c71d9215c8e95083ae432aa51fe60943146e3780adb64684444d989258948a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page