Skip to main content

Analysis, conversion and visualization of diaPASEF data.

Project description

diapysef Vignette

Author: Max Frank, Hannes Roest

Contributors: Annie Ha, Joshua Charkow, Justin Sing

Last Updated: 2022-11-09

diapysef is a convenience package for working with DIA-PASEF data. It has functionalities to convert Bruker raw files into a format that OpenMS can understand. Thus OpenSwath can be used to analyze the data and TOPPView can be used to visualize. diapysef itself has also some basic visualization capability that allows to display the window setting of a DIA-PASEF run in the context of a precursor map.

Installation

If you wish to install from pyPI

$ pip install diapysef

If you wish to install from source, you can do the following:

$python setup.py install

Legacy (version <= 0.3.5)

We have not uploaded this package to pyPI, since the package contains some small example data and small amounts of bruker code. You can install the package through the provided wheel. Make sure you have python and pip installed. Then, in your terminal command prompt, run:

## Optional: if conversion with compression is required install the newest pyopenms nightly build
## Otherwhise, from the folder containing the .whl file run
pip install diapysef-0.1-py2.py3-none-any.whl

On windows make sure that you add the Scripts/ folder of your python installation to your PATH to be able to call the command line tools from anywhere.

Running diapysef

diapysef contains several tools and can be run via the command line, or can be used for scripting:

$ diapysef --help

Found Bruker sdk. Access to the raw data is possible.

Usage: diapysef [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...]...

Mobi-DIK (Ion Mobility DIA Tool-Kit) is a package for analysis of DIA data
coupled to ion mobility.

Visit http://openswath.org/en/latest/docs/mobi-dik.html for usage
instructions and help

Options:
--version  Show the version and exit.
--help     Show this message and exit.

Commands:
converttdftomzml     Conversion program to convert a Bruker TIMS .d...
export               Export a reduced targeted mzML file to a tsv file
prepare-coordinates  Generate peptide coordinates for targeted...
report               Generate a report for a specfific type of plot
targeted-extraction  Extract from the raw data given a set of target...

Converting raw files

$ diapysef converttdftomzml --help

Found Bruker sdk. Access to the raw data is possible.

Usage: diapysef converttdftomzml [OPTIONS]

Conversion program to convert a Bruker TIMS .d data file to mzML format

Options:
--in PATH                       The location of the directory containing raw
                                data (usually .d).  [required]
--out TEXT                      The name of the output file (mzML).
                                [required]
--merge INTEGER                 Number of consecutive frames to sum up
                                (squash). This is useful to boost S/N if
                                exactly repeated frames are measured.
                                [default: -1]
--keep_frames / --no-keep_frames
                                Whether to store frames exactly as measured
                                or split them into individual spectra by
                                precursor isolation window (default is to
                                split them - this is almost always what you
                                want).  [default: no-keep_frames]
--verbose INTEGER               Verbosity.  [default: -1]
--overlap INTEGER               How many overlapping windows were recorded
                                for the same m/z window - will split the
                                output into N output files.  [default: -1]
--framerange TEXT               The minimum and maximum Frames to convert.
                                Useful to only convert a part of a file.
                                [default: [-1, -1]]
--help                          Show this message and exit.

If you see an output like this:

Bruker sdk not found. Some functionalities that need access to raw data will not be available. To activate that functionality place libtimsdata.so (Linux) or timsdata.dll in the src folder.

This functionality can only be carried out if the bruker sdk is present. Please install it first. The sdk can be installed by installing proteowizard(version >=3, http://proteowizard.sourceforge.net), or by placing the a library file in your path (For windows this will be timsdata.dll and for Linux libtimsdata.so).

diapysef will attempt to install the appropriate sdk for your system to the current working directory. If this fails, you will have to manually install it yourself.

diapysef converttdftomzml --in IPP_U1_B10_60min_400nL_Slot1-10_1_1192_6-16-2021.d --out test_diapysef.mzML
Found Bruker sdk. Access to the raw data is possible.

[2022-11-09 09:58:00] INFO: Converting IPP_U1_B10_60min_400nL_Slot1-10_1_1192_6-16-2021.d...
Analysis has 38269 frames.
100%|████████████████████████████████████████████████████████████████████████████| 38269/38269 [48:27<00:00, 13.16it/s]
[2022-11-09 10:46:31] INFO: Finished converting TDF data to mzML!

Legacy (version <= 0.3.5)

Assuming you have added the python scripts folder to your path you can simply run:

convertTDFtoMzML.py

If you see an output like this:

Bruker sdk not found. Some functionalities that need access to raw data will not be available. To activate that functionality place libtimsdata.so (Linux) or timsdata.dll in the src folder.

This functionality can only be carried out if the bruker sdk is present. Please install it first. The sdk can be installed by installing proteowizard(version >=3, http://proteowizard.sourceforge.net), or by placing the a library file in your path (For windows this will be timsdata.dll and for Linux libtimsdata.so).

You will have to install a Bruker sdk that can handle TDF3.0. You can either place the sdk file in your working directory (safest option) or somewhere in your PATH. Another option is to install the latest version of ProteoWizard which supports access to the bruker sdk.

Now you can run the tool without arguments to get the usage info:
bash convertTDFtoMzML.py
Found Bruker sdk. Access to the raw data is possible.

usage: convertTDFtoMzML.py [-h] -a ANALYSIS_DIR -o OUTPUT_FNAME
                           [-m MERGE_SCANS] [-r FRAME_LIMIT FRAME_LIMIT]
convertTDFtoMzML.py: error: the following arguments are required: -a/--analysis_dir, -o/--output_name

Targeted Data Extraction

Generating peptide coordinates for targeted raw data extraction

In order to extract a targeted region of the data, you need peptide coordinates that contain the necessary m/z, RT, and ion mobility information to extract data in a targeted region.

diapysef prepare-coordinates --help
diapysef prepare-coordinates --in merged.osw --out peptides_coord_ex.pkl --run_id 5500589384113116496 --target_peptides '["T(UniMod:21)ELISVSEVHPSR", "TELIS(UniMod:21)VSEVHPSR"]'
Bruker sdk not found. Some functionalities that need access to raw data will not be available. To activate that functionality place libtimsdata.so (Linux) or timsdata.dll in the src folder.

[2022-09-06 11:16:26] INFO: Generating coordinates...
[2022-09-06 11:16:26] INFO: Finished generating coordinates!

NOTE: We specify run_id if we pass a merged osw, so that we get coordinates for a specific run with targeted RT and IM identification coordinates

NOTE: A merged.osw can be obtained by an OpenMS-OpenSwathWorkflow-PyProphet workflow. See [openswath.org](openswath.org) for information on how to perform an OpenSwathWorkflow.

If you want to manually generate a peptide coordinate dictionary, it should look something like the following:

peptides = {
            'T(UniMod:21)ELISVSEVHPSR_2': {
                    'peptide': 'T(UniMod:21)ELISVSEVHPSR',
                    'precursor_mz': 767.3691,
                    'charge': 2,
                    'rt_apex': 1730.08,
                    'im_apex': 1.026132868499893,
                    'qvalue': 0.0,
                    'product_mz': [496.2627, 811.4057, 910.4741, 997.5061, 1110.5902, 1223.6743],
                    'product_charge': [1, 1, 1, 1, 1, 1],
                    'product_annotation': ['y4^1', 'y7^1', 'y8^1', 'y9^1', 'y10^1', 'y11^1'],
                    'product_detecting': [1, 1, 1, 1, 1, 1],
                    'rt_boundaries': [1718.036865234375, 1751.983642578125]},
                'TELIS(UniMod:21)VSEVHPSR_2': {
                    'peptide': 'TELIS(UniMod:21)VSEVHPSR',
                    'precursor_mz': 767.3691,
                    'charge': 2,
                    'rt_apex': 1905.32,
                    'im_apex': 1.018710764387254,
                    'qvalue': 5.231105591576423e-08,
                    'product_mz': [344.1816, 359.2037, 724.3737, 811.4057, 910.4741, 1077.4725],
                    'product_charge': [1, 1, 1, 1, 1, 1],
                    'product_annotation': ['b3^1', 'y3^1', 'y6^1', 'y7^1', 'y8^1', 'y9^1'],
                    'product_detecting': [1, 1, 1, 1, 1, 1],
                    'rt_boundaries': [1889.531494140625, 1918.104248046875]},
                'TELIS(UniMod:21)VSEVHPSR_3': {
                    'peptide': 'TELIS(UniMod:21)VSEVHPSR',
                    'precursor_mz': 511.9151,
                    'charge': 3,
                    'rt_apex': 1932.09,
                    'im_apex': 0.819074213225268,
                    'qvalue': 0.013292880776271469,
                    'product_mz': [359.2037, 496.2627, 595.3311, 811.4057, 1077.4725, 1303.6406],
                    'product_charge': [1, 1, 1, 1, 1, 1],
                    'product_annotation': ['y3^1', 'y4^1', 'y5^1', 'y7^1', 'y9^1', 'y11^1'],
                    'product_detecting': [1, 1, 1, 1, 1, 1],
                    'rt_boundaries': [1917.89404296875, 1953.622314453125]}
            }

NOTE: we create separate coordinates for peptide ion charge states. Each precursor ion (peptide of specific charge state), will have its own nested dictionary of target coordinate paramaters. I.e. the peptide T(UniMod:21)ELISVSEVHPSR can have multiple charge states, and should be separated as T(UniMod:21)ELISVSEVHPSR_2 and T(UniMod:21)ELISVSEVHPSR_3 to indicated a charge 2 precursor and a charge 3 precursor respectively.

Not all the values are necessary, however, the ones that are needed are: peptide, precursor_mz, charge, rt_apex, im_apex, product_mz.

You can save the dictionary to a pickle file using the following code:

import pickle
with open(f"peptides.pkl", "wb") as output_file: pickle.dump(peptides, file=output_file, )

Targeted Extraction of the Raw diaPASEF mzML data

To reduce the raw diaPASEF data, for visualization or for preliminary algorithm development, you can perform a targeted extraction of the data to reduce the data given target coordinates

$ diapysef targeted-extraction --help
$ diapysef targeted-extraction --in IPP_M10_DIA-PaSEF_60min_Bruker10_400nL_1ul-inj-redo2_Slot2-25_1_2151.mzML --coords peptides_coord_ex.pkl --verbose 0 --mslevel [1,2] --mz_tol 20 --rt_window 50

Bruker sdk not found. Some functionalities that need access to raw data will not be available. To activate that functionality place libtimsdata.so (Linux) or timsdata.dll in the src folder.

[2022-09-07 12:07:19] INFO: Loading data...
[2022-09-07 12:07:46] INFO: Reducing spectra using targeted coordinates...
INFO: Processing..TELIS(UniMod:21)VSEVHPSR_3: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [01:13<00:00, 24.35s/it]
[2022-09-07 12:09:00] INFO: Finished extracting targeted spectra!

NOTE: You may get a speed performance boost if you use cached mzML files (files produced from OpenSwathWorflow when using cacheWorkingInMemory).

Cached spectra processing is now 10 fold faster than ondisk, using hroest/OpenMS/tree/feature/drift_time_os_spec_2

img/output_ondisk_vs_cache_example.png

It also now only takes 21.0601 sec to reduce the spectra from cache, vs 74.5139 sec to reduce the spectra from ondisk

On Disk Experiment

diapysef targeted-extraction --in data/raw/IPP_M10_DIA-PaSEF_60min_Bruker10_400nL_1ul-inj-redo2_Slot2-25_1_2151_MS1.mzML --coords peptides.pkl --readOptions ondisk --verbose 1 --mslevel [1] --mz_tol 20 --rt_window 40 --im_window 0.08
Found Bruker sdk. Access to the raw data is possible.

[2022-09-30 13:18:20] INFO: Loading data...
[2022-09-30 13:20:34] INFO: Reducing spectra using targeted coordinates...
INFO: Processing..YVC(UniMod:4)EGPSHGGLPGAS(UniMod:21)SEK_3: 100%|███████████████████████████████████████████████████████████| 54/54 [01:14<00:00, 1.38s/it]
[2022-09-30 13:21:48] INFO: Finished extracting targeted spectra!

Cached

diapysef targeted-extraction --in data/raw/cached/20220928_171403_179508ef404e_1_1_ms1.mzML --coords peptides.pkl --readOptions cached --verbose 1 --mslevel [1] --mz_tol 20 --rt_window 40 --im_window 0.08
Found Bruker sdk. Access to the raw data is possible.

[2022-09-30 13:41:11] INFO: Loading data...
[2022-09-30 13:41:11] INFO: Reducing spectra using targeted coordinates...
INFO: Processing..YVC(UniMod:4)EGPSHGGLPGAS(UniMod:21)SEK_3: 100%|███████████████████████████| 54/54 [00:21<00:00, 2.57it/s]
[2022-09-30 13:41:32] INFO: Finished extracting targeted spectra!

Exporting reduced targeted mzML for easier data manipulation and plotting

We can export the reduced mzML to a tsv file with m/z, retention time, ion mobility and intensity data as along tsv file

$ diapysef export --help
$ diapysef export --in targed_data_extraction.mzML --out extracted_data.tsv --mslevel [1,2] --verbose 10 --log_file export.log

Bruker sdk not found. Some functionalities that need access to raw data will not be available. To activate that functionality place libtimsdata.so (Linux) or timsdata.dll in the src folder.

[2022-09-07 12:09:34] INFO: Loading data...
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5460/5460 [00:00<00:00, 6816.65it/s]
[2022-09-07 12:09:36] INFO: Finished exporting data!

Generating a report of RT and IM Heatmap plots

We can generate a 2D heatmap of the data using the report module. The current implementation is a quick plotting implementation in matplotlib. You could use other plotting tools libraries to make nice plots if you want, using the extracted_data.tsv file.

$ diapysef report --help
$ diapysef report --in extracted_data.tsv --out diapasef_report_rt_im.pdf

Bruker sdk not found. Some functionalities that need access to raw data will not be available. To activate that functionality place libtimsdata.so (Linux) or timsdata.dll in the src folder.

[2022-09-07 12:13:14] INFO: Generating a report of plots for a Retention Time and Ion Mobility Heatmaps...
INFO: Plotting..TELIS(UniMod:21)VSEVHPSR_3: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00,  1.16it/s]
[2022-09-07 12:13:16] INFO: Finished generating report!
img/output_targeted_data_extraction_example.png

Data access and convenience functions

The rest of the tools are available as scripts but can also be used in a more modular fashion from wihtin python directly. It can access raw files from both PASEF and DIA-PASEF runs and reads in some MaxQuant txt files. Since these functions do not acutally need acess to the raw data, they can also be run without the sdk.

Obtaining a window layout file

This can be done with a commandline tool:

get_dia_windows.py 20180320_AnBr_SA_diaPASEF_200ng_HeLa_Rost_Method_4_a_01_A1_01_2143.d/ windows.csv

Or in python:

import diapysef as dp

# Open connection to a DIA-PASEF run
dia = dp.TimsData("/media/max/D6E01AF3E01ADA17/code/dia-pasef/bruker/20180320_AnBr_SA_diaPASEF_200ng_HeLa_Rost_Method_4_a_01_A1_01_2143.d/")
# Obtain the window layout from the first frames
win = dia.get_windows()
# Save as csv
win.to_csv("window_layout.csv")
print("File Written")
File Written

Annotating ion mobilities

This is useful to convert scan numbers which are corresponding to different ion mobilities depending on the run to 1/K0 which is a more standardized measure.

This is needed, for example, to generate a library for OpenSwath targeted extraction. We can annotate Ion mobilities with 1/K0 values in a maxquant output using the calibration information in the raw file.

annotate_mq_ionmobility.py 20180309_HeLa_MQ_combined/ 20180309_TIMS1_Metab_AnBr_SA_200ng_HELA_Bremen13_14_A1_01_2129.d/ annotated1K0

Or in python:

import diapysef as dp

#Open connection to the pasef data file
pas = dp.PasefData("/media/max/D6E01AF3E01ADA17/code/dia-pasef/bruker/20180309_TIMS1_Metab_AnBr_SA_200ng_HELA_Bremen13_14_A1_01_2129.d/")
# Open connection to the Maxquant output from the same run
mq = dp.PasefMQData("/media/max/D6E01AF3E01ADA17/code/dia-pasef/bruker/20180309_HeLa_MQ_combined/")

## Annotate all peptides
# Read in the allPeptides table from the output and annotate with 1/K0 using the calibration obtained from pas
mq.get_all_peptides()
mq.annotate_ion_mobility(pas)
#Or more directly
mq.get_all_peptides(pas)
# Save the table
all_pep = mq.all_peptides
all_pep.to_csv("all_peptides_1K0.csv")

## Annotate evidence
# Read in the allPeptides table from the output and annotate with 1/K0 using the calibration obtained from pas
mq.get_evidence()
mq.annotate_ion_mobility(pas)
#Or more directly
mq.get_evidence(pas)
# Save the table
ev = mq.evidence
ev.to_csv("evidence_1K0.csv")

Plotting window layouts

The above operations let you obtain a precursor map (either with all MS1 features or with the peptide evidence) and a window layout. It is informative to plot these together to get some insight into how well the windows cover the precursor space.

We provide the following plotting function, as a commandline script

plot_dia_windows.py window_layout.csv all_peptides_1K0.csv

Or in python:

import diapysef as dp
import pandas as pd

dia = dp.TimsData("/media/max/D6E01AF3E01ADA17/code/dia-pasef/bruker/20180320_AnBr_SA_diaPASEF_200ng_HeLa_Rost_Method_4_a_01_A1_01_2143.d/")
win = dia.get_windows()
# Diapysef saves a precursor layout from a Pasef run internally so it is possible to quickly plot windows without
# specifying a precursor map
dp.plot_window_layout(windows = win)

# If the windows should be plotted against a certain precursor map (e.g. all_peptides obtained above) you can specify
# an additional dataframe
precursors = pd.read_csv("all_peptides_1K0.csv")

dp.plot_window_layout(windows = win, precursor_map = precursors)
img/output_7_0.png img/output_7_1.png

Docker image

There is a docker image available on docker hub singjust/modibik

$ docker run -it --rm -v $PWD:/data/ singjust/mobidik:latest diapysef --help
Found Bruker sdk. Access to the raw data is possible.

Usage: diapysef [OPTIONS] COMMAND1 [ARGS]... [COMMAND2 [ARGS]...]...

Mobi-DIK (Ion Mobility DIA Tool-Kit) is a package for analysis of DIA data
coupled to ion mobility.

Visit http://openswath.org/en/latest/docs/mobi-dik.html for usage
instructions and help

Options:
--version  Show the version and exit.
--help     Show this message and exit.

Commands:
converttdftomzml     Conversion program to convert a Bruker TIMS .d...
export               Export a reduced targeted mzML file to a tsv file
prepare-coordinates  Generate peptide coordinates for targeted...
report               Generate a report for a specfific type of plot
targeted-extraction  Extract from the raw data given a set of target...

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

diapysef-1.0.10.tar.gz (710.6 kB view details)

Uploaded Source

File details

Details for the file diapysef-1.0.10.tar.gz.

File metadata

  • Download URL: diapysef-1.0.10.tar.gz
  • Upload date:
  • Size: 710.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for diapysef-1.0.10.tar.gz
Algorithm Hash digest
SHA256 9de7039c5d1338bdf3e70a648c8cf202e919f567e87b2579609f727e2c6fa0d4
MD5 29091018d19d70a38e5f543b974f13ae
BLAKE2b-256 b2660ad724832564f968473e4eafccd8088604df5062173b8a6eb53d943029d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page