Skip to main content

Rust re-implementation of the MinCED algorithm to Detect Instances of CRISPRs in Environmental Data.

Project description

🔪🧅 Diced Star me

A Rust re-implementation of the MinCED algorithm to Detect Instances of CRISPRs in Environmental Data.

Actions Coverage License PyPI Bioconda AUR Wheel Python Versions Python Implementations Source GitHub issues Docs Changelog Downloads

🗺️ Overview

MinCED is a method developed by Connor T. Skennerton to identify Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) in isolate and metagenomic-assembled genomes. It was derived from the CRISPR Recognition Tool [1]. It uses a fast scanning algorithm to identify candidate repeats, combined with an extension step to find maximally spanning regions of the genome that feature a CRISPR repeat.

Diced is a Rust reimplementation of the MinCED method, using the original Java code as a reference. It produces exactly the same results as MinCED, corrects some bugs, and is much faster. The Diced implementation is available as a Rust library for convenience.

📋 Features

  • library interface: The Rust implementation is written as library to facilitate reusability in other projects. It is used to implement a Python library using PyO3 to generate a native extension.
  • single dependency: Pyrodigal is distributed as a Python package, so you can add it as a dependency to your project, and stop worrying about the Prodigal binary being present on the end-user machine.
  • zero-copy: The Scanner which iterates over candidate CRISPRs is zero-copy if provided with a simple &str reference, but it also supports data behind smart pointers such as Rc<str> or Arc<str>.
  • fast string matching: The Java implementation uses a handwritten implementation of the Boyer-Moore algorithm[2], while the Rust implementation uses the str::find method of the standard library, which implements the Two-way algorithm[3]. In addition, the memchr crate can be used as a fast SIMD-capable implementation of the memmem function.

💡 Example

Diced supports any sequence in string format.

import Bio.SeqIO
import diced

record = Bio.SeqIO.read("diced/tests/data/Aquifex_aeolicus_VF5.fna", "fasta")
sequence = str(record.seq)

for crispr in diced.scan(sequence):
    print(
        crispr.start,
        crispr.end,
        len(crispr.repeats),
        crispr.repeats[0],
    )

💭 Feedback

⚠️ Issue Tracker

Found a bug ? Have an enhancement request ? Head over to the GitHub issue tracker if you need to report or ask something. If you are filing in on a bug, please include as much information as you can about the issue, and try to recreate the same bug in a simple, easily reproducible situation.

📋 Changelog

This project adheres to Semantic Versioning and provides a changelog in the Keep a Changelog format.

⚖️ License

This library is provided under the open-source GPLv3 license, or later. The code for this implementation was derived from the MinCED source code, which is available under the GPLv3 as well.

This project is in no way not affiliated, sponsored, or otherwise endorsed by the original MinCED authors. It was developed by Martin Larralde during his PhD project at the Leiden University Medical Center in the Zeller team.

📚 References

  • [1] Bland, C., Ramsey, T. L., Sabree, F., Lowe, M., Brown, K., Kyrpides, N. C., & Hugenholtz, P. (2007). 'CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats'. BMC bioinformatics, 8, 209. PMID:17577412 doi:10.1186/1471-2105-8-209.
  • [2] Boyer, R. S. and & Moore, J. S. (1977). 'A fast string searching algorithm'. Commun. ACM 20, 10 762–772. doi:10.1145/359842.359859
  • [3] Crochemore, M. & Perrin, D. (1991). 'Two-way string-matching'. J. ACM 38, 3, 650–674. doi:10.1145/116825.116845

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

diced-0.1.0.tar.gz (500.6 kB view details)

Uploaded Source

Built Distributions

diced-0.1.0-pp310-pypy310_pp73-win_amd64.whl (176.2 kB view details)

Uploaded PyPy Windows x86-64

diced-0.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (309.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

diced-0.1.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (311.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

diced-0.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (276.9 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

diced-0.1.0-pp39-pypy39_pp73-win_amd64.whl (176.5 kB view details)

Uploaded PyPy Windows x86-64

diced-0.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (309.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

diced-0.1.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (311.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

diced-0.1.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (276.7 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

diced-0.1.0-pp38-pypy38_pp73-win_amd64.whl (176.6 kB view details)

Uploaded PyPy Windows x86-64

diced-0.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (309.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

diced-0.1.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (311.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

diced-0.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (276.5 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

diced-0.1.0-pp37-pypy37_pp73-win_amd64.whl (178.7 kB view details)

Uploaded PyPy Windows x86-64

diced-0.1.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (312.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

diced-0.1.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (314.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

diced-0.1.0-cp312-cp312-win_amd64.whl (174.4 kB view details)

Uploaded CPython 3.12 Windows x86-64

diced-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (309.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

diced-0.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (311.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

diced-0.1.0-cp312-cp312-macosx_11_0_arm64.whl (269.1 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

diced-0.1.0-cp312-cp312-macosx_10_9_x86_64.whl (275.5 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

diced-0.1.0-cp311-cp311-win_amd64.whl (176.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

diced-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (310.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

diced-0.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (311.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

diced-0.1.0-cp311-cp311-macosx_11_0_arm64.whl (270.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

diced-0.1.0-cp311-cp311-macosx_10_9_x86_64.whl (277.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

diced-0.1.0-cp310-cp310-win_amd64.whl (176.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

diced-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (310.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

diced-0.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (311.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

diced-0.1.0-cp310-cp310-macosx_11_0_arm64.whl (269.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

diced-0.1.0-cp310-cp310-macosx_10_9_x86_64.whl (277.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

diced-0.1.0-cp39-cp39-win_amd64.whl (176.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

diced-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (310.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

diced-0.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (311.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

diced-0.1.0-cp39-cp39-macosx_11_0_arm64.whl (270.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

diced-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl (277.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

diced-0.1.0-cp38-cp38-win_amd64.whl (176.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

diced-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (311.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

diced-0.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (312.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

diced-0.1.0-cp38-cp38-macosx_11_0_arm64.whl (270.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

diced-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl (277.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

diced-0.1.0-cp37-cp37m-win_amd64.whl (176.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

diced-0.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (310.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

diced-0.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (312.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

diced-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (277.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file diced-0.1.0.tar.gz.

File metadata

  • Download URL: diced-0.1.0.tar.gz
  • Upload date:
  • Size: 500.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for diced-0.1.0.tar.gz
Algorithm Hash digest
SHA256 a12207acd1e5cd114409c6f636415150f97f9c285b11ab2210970310653fdd68
MD5 d791bcbcdf224a6c812a225d74f1ab5c
BLAKE2b-256 3e5f74627b832d71963caa48111c113f1f1b6ec1ca7d7e486788eb34443cfa41

See more details on using hashes here.

File details

Details for the file diced-0.1.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 276b745b24b7e5698fcb97960512f415372aa4722abe87950750f03eb5a55dd0
MD5 84f2cedccf066d83db0333af2239fde1
BLAKE2b-256 889b3c51046a41eeb5b36dc0843fc886f1a1156777b77e3d6488bdfd3e48f478

See more details on using hashes here.

File details

Details for the file diced-0.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c6e71c075a29b8600baeb88acb7a197fde30e0cab0407dfaa761a7e3f797a504
MD5 7ef95608bfed0d0fb26164b0bf41ae94
BLAKE2b-256 bac804743aaa215dc32570c28e8b82d32199222085052506175f7eb334d001d3

See more details on using hashes here.

File details

Details for the file diced-0.1.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 287a55558e7b9ade703a467823125f2fdeba797eb0a98df978514289613b626d
MD5 1a323bdd7d393620a9f6f38ecaee14ed
BLAKE2b-256 d6ac3dd8a51316ca35c8b8dbdd435bfd4a33b3d7d402ec7e80d9ef0796c3b4e8

See more details on using hashes here.

File details

Details for the file diced-0.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c4b6e07a1366047f53273eff4b1b639f49957a8c4c6c01c9316e9f03dee0e08b
MD5 e3c6709187e703816861272ae886099d
BLAKE2b-256 ec7470cf5de93d9f345dd1a3617b8038bf098d8239a9823484c7171b62026ab3

See more details on using hashes here.

File details

Details for the file diced-0.1.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c883e11bd1ceb1458b6b7da1852005f5a7795f7f014de0246527bc1c5bcfa4da
MD5 803764b5d4af466ee473146cbc61d98f
BLAKE2b-256 180952f62df4e2a904ef2b3e81ff3820c6b768bc31c15d3de049280e8353ee62

See more details on using hashes here.

File details

Details for the file diced-0.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e0dc27ce9cd0a62ca0e18c68b37bd0b31253321ba57d2cbec6f272a9732e45bc
MD5 59773e45fa6b584ca5790f20b5cad80c
BLAKE2b-256 8ccb361e33112048dd0aa781dc51ac6a1ab3c3ab07da744245e25a1fd4b1561e

See more details on using hashes here.

File details

Details for the file diced-0.1.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 44134ea82e8fd8be0cd1e201b7dd6ba4c005d21ae4875c78048ebef37f5d169b
MD5 68084daf06bfb57bd425045b83022970
BLAKE2b-256 1266830ec5a11ae8dc91a3fb94371a14d0772ecea20c373aa584250b0f572537

See more details on using hashes here.

File details

Details for the file diced-0.1.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 fee316269be7b40554e2ff7d2dbdcda2c347bba3221e53b8770ffb428ca236c8
MD5 d4348e55862824187d1cf984ceb5c5d8
BLAKE2b-256 00015c7298777d3ddd7c4936c9f09fb44cdda7f36ff4d98d7acbc65d67099acb

See more details on using hashes here.

File details

Details for the file diced-0.1.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3d786902a0d92f43b1b3f474887c866353d8263b561656ece20d8c9b6035f687
MD5 6807465ac3d02016182c96bd9406b135
BLAKE2b-256 b5276f765f255c6e392cab71b39922120554cd79e3176e0bf470b97be1e25496

See more details on using hashes here.

File details

Details for the file diced-0.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7595b34b3036b0400ade144c4761697b2abd12749995966a2c546fdfdf5e142
MD5 f77335e3d9c3ae830b190e9945d1d21b
BLAKE2b-256 688a81314c4014778db4b70eab94fcd2af24b615dc1e7bf267dae90829de9246

See more details on using hashes here.

File details

Details for the file diced-0.1.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0149a62e2da2fc3ba4e5648c605454e8ac6b37509b475bb12c6df109401229d0
MD5 a5b6bf4c048ef15a218be80e5e10ff3b
BLAKE2b-256 fe84ba049f4632698ae4b01b14ceb7bc84388823d8273eeef32b21e2dc6abe8c

See more details on using hashes here.

File details

Details for the file diced-0.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 af8f155c4baf79d010be1b0d7b04c507da2eed6037ccdf94f6466442a79d97bd
MD5 e1a91216cf626e132e7ff12c6defea7d
BLAKE2b-256 903a22f9bacb983909d0d553070aaad03d0584ed821da79a2ecc2fa08cde06de

See more details on using hashes here.

File details

Details for the file diced-0.1.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d811ebe7174811256c015be13b5516c1f5103090f266b44c87638deec3897f33
MD5 1a723b23efe3c1e2b23fe01589a4382d
BLAKE2b-256 824d0ed6df84e5450f011843a134c0a9ec93e3f0b4e3da859be30448559d3b7c

See more details on using hashes here.

File details

Details for the file diced-0.1.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e5c6b7a176df141c5babd5ec01b85a2ca96c4bc0033dab6ab3dc3267bc687053
MD5 c555c4b1a3b445dfe6d7d8d989cd021d
BLAKE2b-256 18027a91bfb2fc1a06c4c72bb0a941dece9abc3c0e1a0e546c04c569ac5ba399

See more details on using hashes here.

File details

Details for the file diced-0.1.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dc42c1983aa8056949b46277ae0595bf821e5580d51de4adbea204c48a8b19ce
MD5 a8d651e8ed2689e3e9af88d64f78bc8f
BLAKE2b-256 296270d01c382a8ed7e33f37b4c79dd815e18c439c9514570a8c723c5a887128

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: diced-0.1.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 174.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for diced-0.1.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b5d626e128a2fdd93c90b7aed0ab7c84ed63459592e64382a84ca8ea704c3597
MD5 04c1dfd4df5a60b7167d5a91b6e4671d
BLAKE2b-256 ebe7bf6f091114cf1d28fd89046b27e33d14218ae83db111efb2cf5a4d3bec3c

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9e17e159e335baaefc66bc1f4e057b4a208655a91e265e53151a289d0d1efe31
MD5 6ea6b42653b0cc47dcdee242cc2557e1
BLAKE2b-256 9f1f99b3fbdb8907de938f58dab90e8cb587d2d38ede7df97c77f1965b824a0f

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7bc7a0cf2b33bf1df7bcfb88bd7e91eeda96ae8204c9ad3251d6f7762449e68e
MD5 7200c4113632a435b5c2325f4fdfd09a
BLAKE2b-256 b0276db5b050cefe545ea2bb9dda1e7f2896e515e1a16cceb706ae8561ffcf4d

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f0c996adf7e59dc1c4a0ed94259d94a760f7272dbdc24ae6f2603ee38cb5c181
MD5 1351dbf524f944ab90f4bf1e5ffdd1c9
BLAKE2b-256 a9ef00d366397df4d50209e2dfebe182607a3a948152279d7956571d3bfbdb1a

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 23e60ead06cc470b977aa42d88fe22dc91eee98eb588e0ac7508f88b6bbb2c8f
MD5 a1a7802c67e0fc5ae878665aee0d4ee1
BLAKE2b-256 fe3b7f5060508dc1d66342d4aa1d41e551e1e9caf22f4fce8fcf3128fe2c450f

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: diced-0.1.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 176.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for diced-0.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d7a294377785aa7117c38c2ef073f61c598b330f8de9e8e5ab00b94ced6ec66b
MD5 10f17b435987396e6f3a8d6fa0e563c1
BLAKE2b-256 a397bf8ef78ffa438de5e115ac79d4c458de6ea6d23bfb8ab4371eb417fe873b

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ae4bb6de6c3387345d3bc7da6f7e3dd53ff399024801d6fd76787cbea7c601a
MD5 58d76ceb2d4506c770efa34bc3fd5c62
BLAKE2b-256 571107d89fb6ab0b15f3d9eafdb2c6fa961e491522c77124fd83c6b296424b46

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d396691f431e1005b6ab894d3be421e861920d083b6af55b00dc89e5c6d5f4f8
MD5 76814d5fb3c97315363c8e332fd24bf5
BLAKE2b-256 191080291157ab49ef9c94970f31d3cf32ec9f91cd7151438ecab2b4ff3edc9c

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a221bee4945a904ed6580bd4f8275b7fb92a1c32408f11c48550df084defcea4
MD5 077663321f016c8d8594c9e3ed60fc3e
BLAKE2b-256 160e2c9b7a929cf9069315806553a3e138410aeef202650194537994d05a4570

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d53314d0ebce0a70852ddf3c1ab2d29d5590db2f16eb61e80f7ad72650eb2a52
MD5 7461e9717e25156132d19bd0bcea81b1
BLAKE2b-256 471ccf7c188f4a26fce3e2796335a92bd44e51373de2329a270f6ec74ee70cbf

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: diced-0.1.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 176.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for diced-0.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2964dbff66c0d6860d97d664a98648ffe79ab7905eeca9d2ed04ce757dd908b6
MD5 c0e0698704ba6c7346b739e44fc0a6bc
BLAKE2b-256 52c6699f793489be22ae70ae600c8d9c1298ae4dcb9f8ee45859be785bd7b3a2

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de09a0eb45afa6d3221b253441743f3248613ad378ba61bf60f3f74f433456ed
MD5 c9d45e0577cb8de2cd62ca79f8d0828e
BLAKE2b-256 3b672b2c6ccb1d5152a95f13f2d46036d4a41dedeff279e7ceb1fe7e35643ecd

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c1b469d9232efd8ec992c5238719acffc2f2fe53f86ee43b59f54e58177a4247
MD5 2fc3fdc6f4b178c970bcbaba48a49b03
BLAKE2b-256 ef9cd4828c8beb7c0544c8e79b91fde17d4e7a25b62613a45f12fca1c1c06eef

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 01a84703617dbccd70161c8af7991e5807a9ea5b62144e555d565971e17aa2d3
MD5 862038405c2b3274c46027000180772a
BLAKE2b-256 ca1a626f6840038c6c424199eaa0f9311d9a819892096b02b247191bb064af74

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 912cd4b35b8ca8c4e4d06a2223649803882044faed5915f000456ab73e3d2cf2
MD5 6105cd6d2c9f6d4676aab5b48e8d4d5f
BLAKE2b-256 54b25efa41fa9899756c3935199713d5fff6d49ab533589ca3978a269c0bf615

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: diced-0.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 176.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for diced-0.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 010e46a16050897c79b52ce21b0844ef27f99f4e19e1da490b2b5c5b85393062
MD5 132c7689411c6c961500865bcdc764c9
BLAKE2b-256 a46cd40bc2bdcdd268449c2df0d06aa18c2eb5e607db19c9147bbe32a04eb347

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9026bd2740abd4afbe4be3dd1c78ee53c620027adcdda75937b9adf915dbeb24
MD5 4e826403f202334c6c9b220ba9d8cfaf
BLAKE2b-256 bf0be3441f0e2b74f9870235157d18a85735d12616edac18173284d33b3becc7

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9074c62854c3d78011c81c8f610ca720f1add663d19a5c5925acc3a97335a89d
MD5 162095332964c3518caf651970d799bf
BLAKE2b-256 d418bfc65ff6e8944f46451b270fcfcbfb818e327e975c0933f0e438bf1c1695

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c5abca8e94bbc12da7fd712250f71a268176510e1fbadc442eacda7f7d5b93a0
MD5 ae1d56409ec3b5cd1dc732e3178ac570
BLAKE2b-256 abcafd44bb30073da0b7203e98e4dede0919185c9a7752cdc5e227d5c616f15d

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 107b41150d9ef35e429077e790ad4e608b75a970ae2516a44e58a8f0c4e96390
MD5 22fac1a35573e3a577b06fc630d98c03
BLAKE2b-256 1b1002003fc6fb8145c589266e7ecfcce092bb9cb0d2de003ad2601befb22c17

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: diced-0.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 176.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for diced-0.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 eb23c6abbded61332936896ca9b26d064714778de7136b0fcb24ca095e00ed9f
MD5 421b5ae7ff6733bec10100436ad3e147
BLAKE2b-256 836dd52c29b609212af63431ceea4e0c205d684d46eade995b768fbf6b29fcdc

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae67b61759abc342989d42707a6df69a60e154223214c36d15ce33a2ae3afd8d
MD5 a9c59abdf942f373b5b33ba956e8e2b5
BLAKE2b-256 0e53c326bcfe9851eeaa933a0b1fdf7f1c0183d538ec8ea443ba3951344f962c

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cb06e17e566eb3c948fdf7d36de57f7e43e36b13fd16ed74641b860256ca8cb5
MD5 0f18bdfbc39698f7d7f070f8aa652797
BLAKE2b-256 ef264be281081f6255b0bb591b91fdd153d8c3df2267802c5d4d8d5a0f8b86fd

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 203ca8f6ae2be172a9696b9d3c562e8b90225a0637871c74f407c24d5316461e
MD5 afe62701fa48cebeff11ba0aac2ecff7
BLAKE2b-256 2b0da86c0fd936855d8a7fc8487e82de7945d6879cd65aa4c139685ae4cc830f

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e225af4db603c7ec833f5b5ab26c28e36f57920d4fb245132793bb188efb138e
MD5 f860af4bef1c1a82ab7ad7a6f5553aca
BLAKE2b-256 c264abbec99bd96ac31bc12f2bd6ee66c54eadbf0c26ffcca01e652cf4bcee11

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: diced-0.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 176.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for diced-0.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 10cac77aebc1c4935d7c6b33a721719bbac7fbb0bbc9edeb49118cb2c2e58f7c
MD5 9ce0f6beb78f3c9b271fb204dbe96ba4
BLAKE2b-256 aea28174618071607f5813191b06315f692cbd4525b45a310a70d089395c0353

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2d5681927884106a2617b990eb5b3b9846facb2aecec568ac70abe258c2bddcc
MD5 53072acc995e051d9d2d9487e4fd0db9
BLAKE2b-256 293589a588a994b6839237ff6cac1ba5b324f2e24bdfb96b9195c446b7ba245f

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fb18468171cfcdeed501202f496a90fbc933cf86dfdfb7b60c1bee37db377cac
MD5 998988cea593ff0440e5ced0dc3e01f7
BLAKE2b-256 ecdbc1602bc58bbfc8cc7a3428e20654700780db062758982c174f9201355047

See more details on using hashes here.

File details

Details for the file diced-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for diced-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fe9537fe45ad6a582996bae6322e0d1d233677e4b35263cf58071b5f5ddf08c2
MD5 065b61d34998a8586c1f8ab8e0d9f2cb
BLAKE2b-256 40aa75b22d807f60a8161270cbc1890e633f2c6663f205369e922a1238ab676d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page