Utils for gathering, aggregation and handling metadata from DICOM files.
Project description
Utils for gathering, aggregation and handling metadata from DICOM files.
Installation
From pip
pip install dicom-csv
or from GitHub
git clone https://github.com/neuro-ml/dicom-csv
cd dicom-csv
pip install -e .
Example join_tree
>>> from dicom_csv import join_tree
>>> folder = '/path/to/folder/'
>>> meta = join_tree(folder, verbose=2)
>>> meta.head(3)
AccessionNumber | AcquisitionDate | ... | WindowCenter | WindowWidth |
---|---|---|---|---|
000002621237 | 20200922 | ... | -500.0 | 1500.0 |
000002621237 | 20200922 | ... | -40.0 | 400.0 |
000002621237 | 20200922 | ... | -500.0 | 1500.0 |
3 rows x 155 columns |
Example load 3D image
from a series of dicom files (each containing 2D image)
from dicom_csv import join_tree, order_series, stack_images
from pydicom import dcmread
from pathlib import Path
# 1. Collect metadata from all dicom files
folder = Path('/path/to/folder/')
meta = join_tree(folder, verbose=2)
# 2. Select series to load
uid = '...' # unique identifier of a series you want to load,
# you could list them by `meta.SeriesInstanceUID.unique()`
series = meta.query("SeriesInstanceUID==@uid")
# 3. Read files & combine them into a single volume
images2d = [dcmread(folder / row[1].PathToFolder / row[1].FileName) for row in series.iterrows()]
image3d = stack_images(order_series(images2d))
Documentation
You can find the documentation here.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
dicom_csv-0.3.1.tar.gz
(20.3 kB
view details)
File details
Details for the file dicom_csv-0.3.1.tar.gz
.
File metadata
- Download URL: dicom_csv-0.3.1.tar.gz
- Upload date:
- Size: 20.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b9551e4423bb05d0e02be09ebd01fe8f0754b28258259343dd56024896a4004f |
|
MD5 | 9acce4c6c681004e508113ad73c4bbab |
|
BLAKE2b-256 | c03e118737aaeaaa2fef5be7d1e326bc5862cd988645b96477b254564b424c4c |