Skip to main content

DICOM -> JPG/PNG/BMP/TIFF/ndarray

Project description

dicom2jpg

Converts DICOM to JPG/PNG/BMP/TIFF and numpy.ndarray

Installation

pip install dicom2jpg

Introdunction

import dicom2jpg

dicom_img_01 = "/Users/user/Desktop/img01.dcm"
dicom_dir = "/Users/user/Desktop/Patient_01"
export_location = "/Users/user/Desktop/BMP_files"

# convert single DICOM file to jpg format
dicom2jpg.dicom2jpg(dicom_img_01)  

# convert all DICOM files in dicom_dir folder to png format
dicom2jpg.dicom2png(dicom_dir)  

# convert all DICOM files in dicom_dir folder to bmp, to a specified location
dicom2jpg.dicom2bmp(dicom_dir, target_root=export_location) 

# convert single DICOM file to numpy.ndarray for further use
img_data = dicom2jpg.dicom2img(dicom_img_01)

# convert DICOM ByteIO to numpy.ndarray
img_data = dicom2jpg.io2img(dicomIO)

dicom2jpg converts DICOM images to JPG/PNG/BMP/TIFF formats and to numpy.ndarray. It applies window center(level) and window width adjustment, or VOI LUT function to the images, which makes output files looks like what we see on standard DICOM viewers.

dicom2jpg.dicom2jpg(origin, target_root=None, anonymous=False, multiprocessing=True)

dicom2jpg.dicom2png(origin, target_root=None, anonymous=False, multiprocessing=True)

dicom2jpg.dicom2bmp(origin, target_root=None, anonymous=False, multiprocessing=True)

dicom2jpg.dicom2tiff(origin, target_root=None, anonymous=False, multiprocessing=True)

  • origin can be a single DICOM file, a folder, or a list/tuple of file/folder

  • target_root would be the root folder of the first file/folder if not specified

  • exported files paths would be

    target_root / Today / PatientID_Filetype / StudyDate_StudyTime_Modality_AccNum / Ser_Img.Filetype

  • anonymous files paths would be

    target_root / Today / Patient_SerialNum / ModalitySerialNum_Modality / Ser_Img.Filetype

dicom2jpg.dicom2img(origin)

dicom2jpg.io2img(dicomIO)

  • converting dicom files or ByteIO to ndarray
  • ndarray is in 8 bit; RGB format if it's a color image

Image examples

CT MR CXR

Todo

  • Support multi-frame images
  • Image compression
  • Support overlays

Performance

  • Environment: Windows10, Jupyter Notebook, Python 3.8.10
  • 598MB 1873 files {'CT': 1528, 'CR': 52, 'MR': 174, 'DX': 36}
  • Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz. 4 Cores (hyper-threading off)
  • Tested on Ramdisk (no physical HDD was tortured :P)
multiprocessing anonymous duration (seconds)
False True 154.6-159.7
True True 79.2-82.9
False False 157.9-162.8
True False 56-58.5

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dicom2jpg-0.1.3.tar.gz (10.5 kB view details)

Uploaded Source

Built Distribution

dicom2jpg-0.1.3-py3-none-any.whl (10.0 kB view details)

Uploaded Python 3

File details

Details for the file dicom2jpg-0.1.3.tar.gz.

File metadata

  • Download URL: dicom2jpg-0.1.3.tar.gz
  • Upload date:
  • Size: 10.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.10

File hashes

Hashes for dicom2jpg-0.1.3.tar.gz
Algorithm Hash digest
SHA256 797bf7bbf4c1936a0ef7fe22927c3f00190d81eb73aa25417938da35577895fd
MD5 d3777a4ed7223b714f257fd3cd2864f3
BLAKE2b-256 801cbd70810b6d185d26252ac3716ceb72b055dbc3e332bae58ad73fc046592e

See more details on using hashes here.

File details

Details for the file dicom2jpg-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: dicom2jpg-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 10.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.10

File hashes

Hashes for dicom2jpg-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 78d1fbcadb00756ab790627dbe6b1b31afd41ca28841a0d0e27911ea9169dfda
MD5 b71b84ce316cda78dec53bb060f791e3
BLAKE2b-256 5ddeb404941fae01e6d895933784f297f3085ccb16f14de358501df2e5c292d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page