Skip to main content

No project description provided

Project description

dicomselect: DICOM database and conversion software

dicomselect is a Python tool that simplifies the process of creating SQLite databases from directories containing .dcm files or from .zip archives containing .dcm files at the root of the zip file. Once the database is created, you can easily perform SQL-like queries on the data directly within Python. Additionally, dicomselect allows you to convert query results into various file formats supported by SimpleITK, providing flexibility in working with your DICOM data.

Installation

Python 3.10 or higher. You can install this project using pip. If you haven't already, it's recommended to create a virtual environment to isolate project dependencies.

pip install dicomselect

Example

Clone this repo, install dicomselect, then run this example in the repo.

from dicomselect import Database
from pathlib import Path

db_path = Path('tests/output/example.db')
db_path.parent.mkdir(exist_ok=True)

# initialize the Database object with a path to the to-be-created SQLite database file
db = Database(db_path)

# create the .db file, using test data as the input directory.
db.create('tests/input/ProstateX', max_workers=4)

with (db as query):
    # we only want to convert images with patient_id "ProstateX-0000" and image_direction "transverse"
    query_0000 = query.where('patient_id', '=', 'ProstateX-0000'
                             ).where('image_direction', '=', 'transverse')

    # print out a detailed extraction of our query
    print(query_0000.info())

# initialize the Plan object, with a template of DICOM headers for our conversion
# (note: dcm to dcm conversion is possible, if you only need restructuring of your data)
plan = db.plan('{patient_id}/prostateX_{series_description}_{instance_creation_time}', query_0000)

# ensure these properties are set
plan.target_dir = 'tests/output/example'
plan.extension = '.mha'
plan.max_workers = 4

# print out a detailed structure of our intended conversion
print(plan.to_string())

plan.execute()

Check out the results in tests/output/example

===========================================================================

Create a new database

from pathlib import Path
from dicomselect.database import Database

db_path = Path("/path/to/dicomselect_archive.db")
archive_path = Path("/path/to/archive")
db_path.parent.mkdir(parents=True, exist_ok=True)
db = Database(db_path)
db.create(archive_path, max_workers=4)

Select scans

  1. Simple matching of values
from dicomselect.database import Database

mapping = {
    "t2w": {
        "SeriesDescription": [
            "t2_tse_tra_snel_bij bewogen t2 tra",
            "t2_tse_tra",        
            "t2_tse_tra_prostate",
            "t2_tse_tra_snel",
            "t2_tse_tra_Grappa3"
        ]
    },
}

db_path = Path("/path/to/dicomselect_archive.db")
db = Database(db_path)
cursor = db.open()
query = cursor.where("series_description", "in", mapping["t2w"]["SeriesDescription"])
print(query)
db.close()
  1. Pattern matching and combining queries
from dicomselect.database import Database

mapping = {
    "hbv": {
        "SeriesDescription": [
            "ep2d_diff_tra%CALC_BVAL",
            "diffusie-3Scan-4bval_fsCALC_BVAL"
        ],
        "ImageType": [
            r"DERIVED\PRIMARY\DIFFUSION\CALC_BVALUE\TRACEW\DIS2D\DFC",
            r"DERIVED\PRIMARY\DIFFUSION\CALC_BVALUE\TRACEW\DIS2D",
            r"DERIVED\PRIMARY\DIFFUSION\CALC_BVALUE\TRACEW\ND\DFC",
            r"DERIVED\PRIMARY\DIFFUSION\CALC_BVALUE\TRACEW\NORM\DIS2D",
        ]
    }
}

db_path = Path("/path/to/dicomselect_archive.db")
db = Database(db_path)
cursor = db.open()
query1 = cursor.where("series_description", "LIKE", mapping["hbv"]["SeriesDescription"])
query2 = cursor.where("image_type", "LIKE", mapping["hbv"]["ImageType"])
query = query1.union(query2)
print(query)
db.close()

Show info

# print a default overview of the query result
print(query)

# for more fine-grained control of the reporting, use the Info object
# print a summary of series_description given the query
print(query.info().include("series_description"))

# print a summary of everything but series_description given the query
# note: some recommended columns are excluded, such as columns referring to some UID.
print(query.info().exclude("series_description", recommended=True))

Convert

from dicomselect.database import Database

db_path = Path("/path/to/dicomselect_archive.db")
db = Database(db_path)
plan = db.plan("{patient_id}/{series_description}_{patients_age}", query)
plan.target_dir = "/path/to/target_dir"
plan.extension = ".mha"
print(plan)
plan.execute(max_workers=4)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dicomselect-0.8.10.tar.gz (63.0 kB view details)

Uploaded Source

Built Distribution

dicomselect-0.8.10-py3-none-any.whl (62.1 kB view details)

Uploaded Python 3

File details

Details for the file dicomselect-0.8.10.tar.gz.

File metadata

  • Download URL: dicomselect-0.8.10.tar.gz
  • Upload date:
  • Size: 63.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for dicomselect-0.8.10.tar.gz
Algorithm Hash digest
SHA256 c7e0c9ed97c9c459a88141613046b48ccb9fbe750d36d0d4aad04e7de7205aa2
MD5 74d9d714bb4dbaee1623d6bedea0efb9
BLAKE2b-256 99335bcdefe74fc4d34e801bb3df732dbad19da3a268ab0a88380ee7355feaf3

See more details on using hashes here.

File details

Details for the file dicomselect-0.8.10-py3-none-any.whl.

File metadata

  • Download URL: dicomselect-0.8.10-py3-none-any.whl
  • Upload date:
  • Size: 62.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for dicomselect-0.8.10-py3-none-any.whl
Algorithm Hash digest
SHA256 06f3a5ffea9fc6f43a49f79fbe47a59e20466207ff1f21b85fcb83a7d786ca5a
MD5 254c985222fc449603b04f3fab1a44a7
BLAKE2b-256 a270635991792a3c9b0c7764028f4cc1e8141a67adacb6f02791e5ff29a458db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page