Skip to main content

Retrieve medical images via WADO, MINT and DICOM-QR

Project description

dicomtrolley

CI PyPI PyPI - Python Version Code style: black Checked with mypy

Retrieve medical images via WADO, MINT and DICOM-QR

  • Requires python 3.7, 3.8 or 3.9
  • Uses pydicom and pynetdicom. Images and query results are pydicom.Dataset instances
  • Multi-threaded downloading using requests-futures

A trolley

Installation

pip install dicomtrolley

Usage

Basic example

# Create a logged-in http session
session = VitreaConnection(
    "https://server/login").log_in(user,password,realm)
                           
# Use this session to create a trolley using MINT and WADO
trolley = Trolley(searcher=Mint(session, "https://server/mint"),
                  wado=Wado(session, "https://server/wado"]))

# find some studies (using MINT)
studies = trolley.find_studies(MintQuery(patientName='B*'))  

# download the fist one (using WADO)
trolley.download(studies[0], output_dir='/tmp/trolley')

Finding studies

studies = trolley.find_studies(MintQuery(patientName='B*'))

Query parameters can be found in mint.Query. Valid include fields (which information gets sent back) can be found in fields.py:

studies = trolley.find_studies_mint(
    MintQuery(modalitiesInStudy='CT*', 
              patientSex="F", 
              minStudyDate=datetime(year=2015, month=3, day=1),
              maxStudyDate=datetime(year=2020, month=3, day=1),
              includeFields=['PatientBirthDate', 'SOPClassesInStudy']))

Finding series and instance details

To include series and instance level information as well, use the queryLevel parameter

studies = trolley.find_studies(  # find studies series and instances
    MintQuery(studyInstanceID='B*', 
              queryLevel=QueryLevels.INSTANCE)

a_series = studies.series[0]  # studies now contain series    
an_instance = a_series.instances[0]  # and series contain instances

Downloading data

Any study, series or instance can be downloaded

studies = trolley.find_studies(MintQuery(patientName='B*',
                                         queryLevel=QueryLevels.INSTANCE))

path = '/tmp/trolley'
trolley.download(studies, path)                             # all studies
trolley.download(studies[0]), path                          # a single study
trolley.download(studies[0].series[0], path)                # a single series
trolley.download(studies[0].series[0].instances[:3], path)  # first 3 instances

More control over download: obtain pydicom.Dataset instances directly

studies = trolley.find_studies(              # find study including instances
    Query(PatientID='1234', 
          queryLevel=QueryLevels.INSTANCE)

for ds in trolley.get_dataset(studies):      # obtain Dataset for each instance
    ds.save_as(f'/tmp/{ds.SOPInstanceUID}.dcm')

Multi-threaded downloading

trolley.download(studies, path, 
                 use_async=True,  # enable multi-threaded downloading 
                 max_workers=4)   # optionally set number of concurrent workers
                                  # defaults to None which lets python decide

Using WADO only, without search

from dicomtrolley.wado import InstanceReference, Wado

instance = InstanceReference(
    series_instance_uid='1.2.1',
    study_instance_uid='1.2.2',
    sop_instance_uid='1.2.3')


wado = Wado(session, wado_url)
for ds in wado.datasets([instance]):
    ds.save_as(f'/tmp/{ds.SOPInstanceUID}.dcm')

DICOM-QR

Trolley can use DICOM-QR instead of MINT as a search method. See dicom_qr.DICOMQuery for query details.

dicom_qr = DICOMQR(host,port,aet,aec)
trolley = Trolley(searcher=dicom_qr, wado=wado)

# Finding is similar to MINT, but a DICOMQuery is used instead
trolley.find_studies(  
    query=DICOMQuery(PatientName="BAL*",   
                     minStudyDate=datetime(year=2015, month=3, day=1),
                     maxStudyDate=datetime(year=2015, month=4, day=1),
                     includeFields=["PatientBirthDate", "SOPClassesInStudy"],
                     QueryRetrieveLevel=QueryRetrieveLevels.STUDY)) 

Examples

Alternatives

  • dicomweb-client - Active library supporting QIDO-RS, WADO-RS and STOW-RS.
  • pynetdicom - dicomtrolley's DICOM-QR support is based on pynetdicom. Pynetdicom supports a broad range of DICOM networking interactions and can be used as a stand alone application.

Caveats

Dicomtrolley has been developed for and tested on a Vitrea Connection 8.2.0.1 system. This claims to be consistent with WADO and MINT 1.2 interfaces, but does not implement all parts of these standards.

Certain query parameter values and restraints might be specific to Vitrea Connection 8.2.0.1. For example, the exact list of DICOM elements that can be returned from a query might be different for different servers.

Contributing

You can contribute in different ways

Report bugs

Report bugs at https://github.com/sjoerdk/clockify_api_client/issues.

Contribute code

Get the code

Fork this repo, create a feature branch

Set up environment

dicomtrolley uses poetry for dependency and package management

  • Install poetry (see poetry docs)
  • Create a virtual env. Go to the folder where cloned dicomtrolley and use
    poetry install 
    
  • Install pre-commit hooks.
    pre-commit install
    

Add your code

Make your code contributions. Make sure document and add tests for new features. To automatically publish to pypi, increment the version number. See below.

Lint your code

Publish

Create a pull request

Incrementing the version number

A merged pull request will only be published to pypi if it has a new version number. To bump dicomtrolley's version, do the following.

  • dicomtrolley uses semantic versioning Check whether your addition is a PATCH, MINOR or MAJOR version.

  • Manually increment the version number in the following places:

    • pyproject.toml -> version = "v0.1.2"
    • dicomtrolley/__init__.py -> __version__ = "v0.1.2"
  • Add a brief description of your updates new version to HISTORY.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dicomtrolley-0.8.0.tar.gz (25.4 kB view details)

Uploaded Source

Built Distribution

dicomtrolley-0.8.0-py3-none-any.whl (27.3 kB view details)

Uploaded Python 3

File details

Details for the file dicomtrolley-0.8.0.tar.gz.

File metadata

  • Download URL: dicomtrolley-0.8.0.tar.gz
  • Upload date:
  • Size: 25.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.11 CPython/3.7.12 Linux/5.8.0-1042-azure

File hashes

Hashes for dicomtrolley-0.8.0.tar.gz
Algorithm Hash digest
SHA256 3e9d0b619589db68908aa90ac71206c362a5e7dd620ded4d44fcb1159e038bfd
MD5 e4ac2d5b75fff99e2ec34073b8b9c314
BLAKE2b-256 5e0dbec1d4ceb28313b5bd087e943e2323ce530f8bff59c954c0b21a1560cd21

See more details on using hashes here.

File details

Details for the file dicomtrolley-0.8.0-py3-none-any.whl.

File metadata

  • Download URL: dicomtrolley-0.8.0-py3-none-any.whl
  • Upload date:
  • Size: 27.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.11 CPython/3.7.12 Linux/5.8.0-1042-azure

File hashes

Hashes for dicomtrolley-0.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b135bd0f92ce70528c1a5f7acf02260d2d4ab591cf56be9fca895d6686d71573
MD5 3058c2cfea9ba3fdd84397274fbe5721
BLAKE2b-256 03d89d63af1f1a6bcaa2ad49265624d75c6f314215dff89de1433013f9958826

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page