Skip to main content

Class to extract, transform and load (ETL) dicts/json to a Neo4j graph

Project description

Dict2graph

Transfer python-dict/json data into a neo4j graph with the help of https://github.com/kaiserpreusse/graphio

dict2graph also comes with some data transform capabilities.

About

Maintainer: tim.bleimehl@dzd-ev.de

Licence: MIT

issue tracker: https://git.connect.dzd-ev.de/dzdtools/pythonmodules/-/issues?label_name%5B%5D=DZDdict2graph

Content

[[TOC]]

Install

Stable

BRANCH: master

pip3 install git+https://git.connect.dzd-ev.de/dzdpythonmodules/dict2graph.git

Dev

BRANCH: dict2graph-dev

pip3 install git+https://git.connect.dzd-ev.de/dzdpythonmodules/dict2graph.git@dev

Usage

With dict2graph you can transfer python dicts into a neo4j graph out of the box. If you are not happy with the structure of the result, dict2graph comes with a bunch of transformation tools.

The recommended workflow is:

  • Load your dict (or a sample of your larger datasets) as it is, with dict2graph into a neo4j test instance
  • Inspect the result in neo4j
  • Tune the dict2graph config parameters
  • Wipe your neo4j test instance
  • Repeat the work flow with the changed config parameters until your happy with the result

Get started

Lets start with a simple example.

Load dic as it is

from dict2graph import Dict2graph
from py2neo import Graph

dic = {
    "Action": {
        "id": 1,
        "target": "El Oued",
        "Entities": [{"id": "Isabelle Eberhardt"}, {"id": "Slimène Ehnni"}],
    }
}
d2g = Dict2graph()
d2g.parse(dic)
d2g.merge(Graph())

This will result in following graph:

result-exmaple

Transform the model

Now we can use some of the config variables to change the model to something that feels more inutitive as a graph model

First we can remove the Collection Hub, which is needed by default to distinct nested lists. But as we can assure there are no nested list in our source data, we can disable them with config_list_blocklist_collection_hubs:

from dict2graph import Dict2graph
from py2neo import Graph

dic = {
    "Action": {
        "id": 1,
        "target": "El Oued",
        "Entities": [{"id": "Isabelle Eberhardt"}, {"id": "Slimène Ehnni"}],
    }
}
d2g = Dict2graph()
# we can disable specific Collection Hubs by providing a list with it names or disable Collection hubs globaly by providing the string "all"
d2g.config_list_blocklist_collection_hubs = ["all"]
d2g.parse(dic)
d2g.merge(Graph())

Now we directly connect our :Action to the :Entities

result-example2

As a next step we could rename labels, relationship types and properties with the help of config_dict_label_override, config_dict_reltype_override and config_dict_property_name_override to something more suitable:

from dict2graph import Dict2graph
from py2neo import Graph

dic = {
    "Action": {
        "id": 1,
        "target": "El Oued",
        "Entities": [{"id": "Isabelle Eberhardt"}, {"id": "Slimène Ehnni"}],
    }
}
d2g = Dict2graph()
d2g.config_list_blocklist_collection_hubs = ["all"]
d2g.config_dict_label_override = {"Action":"Voyage", "Entities":"Person"}
d2g.config_dict_reltype_override = {"VOYAGE_HAS_PERSON":"TRAVELLER"}
d2g.config_dict_property_name_override = {"Person":{"id":"Fullname"}, "Voyage":{"target":"destination"}}
d2g.parse(dic)
d2g.merge(Graph())

This results in a graph like:

result-example3

There are a lot more possible ways to transform your data before pushing it to the neo4j graph. Browse the specifications to explore all capabilities...

Specifications

Methods

Dict2graph.parse(data,parent_label_name=None)

  • Description: Transform dic data into multiple graphio.nodeset and graphio.relationset . You can apply parse multiple time on a Dict2graph instance

  • Parameters:

    • data:
      • Type: dict or string
      • default: Non optional - no default
      • notes: if using str it must containing valid dic. if using dict type it must not contain complex types
    • parent_label_name
      • Type: string
      • default: None
      • notes: Defines a parent label for top level dic data. e.g. parent_label_name=None on the dic {"name":"Isabelle Eberhardt"} will result in a node (:name{name:"Isabelle Eberhardt"}) but with parent_label_name="Person" the resulting node will be (:Person{name:"Isabelle Eberhardt"})
  • Example:

from dict2graph import Dict2graph
from py2neo import Graph

dic = {"name": "Isabelle Eberhardt"}
d2g = Dict2graph()
d2g.parse(dic, "Person")
d2g.merge(Graph())

Dict2graph.create_indexes(graph)

  • Description: Create indexes based on the primary properties (aka merging keys) on the dic data that is already loaded with Dict2graph.parse() but not yet in the database

  • Parameters:

    • graph:
      • Type: py2neo.Graph
      • default: Non optional - no default
      • notes: The graph object, where indexes, based on the already loaded dic, should be created
  • Example:

from dict2graph import Dict2graph
from py2neo import Graph

dic = {"name": "Isabelle Eberhardt"}
d2g = Dict2graph()
d2g.parse(dic, "Person")
d2g.create_indexes(Graph())
# This will run a `CREATE INDEX ON :Person(name)`
# Resulting in better Dict2graph.merge() perfomance on larger datasets
d2g.merge(Graph())

Dict2graph.create(graph)

  • Description: Commit nodes and relationship based on the loaded dic to a neo4j Graph

  • Parameters:

    • graph:
      • Type: py2neo.Graph
      • default: Non optional - no default
      • notes: The target graph
  • Example:

from dict2graph import Dict2graph
from py2neo import Graph

dic = {"Person":{"name": "Isabelle Eberhardt"})
d2g = Dict2graph()
d2g.parse(dic)
d2g.create(Graph())

Dict2graph.merge(graph)

  • Description: merge nodes and relationship based on the loaded dic into a neo4j Graph

  • Parameters:

    • graph:
      • Type: py2neo.Graph
      • default: Non optional - no default
      • notes: The target graph
  • Example:

from dict2graph import Dict2graph
from py2neo import Graph

dic = {"Person":{"name": "Isabelle Eberhardt"})
d2g = Dict2graph()
d2g.parse(dic)
d2g.merge(Graph())

Dict2graph.create_merge_depending(graph, default="create")

  • Description: Define which nodes and relations should be merged and which ones should be created. Use the config param config_dict_create_merge_depending_scheme to define a scheme

  • Parameters:

    • graph:
      • Type: py2neo.Graph
      • default: Non optional - no default
      • notes: The target graph
    • default
      • Type: str("create"|"merge")
      • default: "create"
      • notes: None
  • Example:

from dict2graph import Dict2graph
from py2neo import Graph

d2g = Dict2graph()
d2g.config_dict_create_merge_depending_scheme = {
    "merge": ["Person", "ACTION_HAS_PERSON"],
    "create": ["Action"],
}


json1 = {
    "Action": {
        "name": "Travel",
        "timestamp": "1897-04-31",
        "Person": {"name": "Isabelle Eberhardt"},
    },
}

json2 = {
    "Action": {
        "name": "Sleep",
        "timestamp": "1897-05-04",
        "Person": {"name": "Isabelle Eberhardt"},
    },
}

json2repeat = {
    "Action": {
        "name": "Sleep",
        "timestamp": "1897-05-04",
        "Person": {"name": "Isabelle Eberhardt"},
    },
}
d2g.parse(json1)
d2g.parse(json2)
d2g.parse(json2repeat)
d2g.create_merge_depending(Graph())
# This will create multiple :Action nodes but only one :Person node

Dict2graph.clear()

  • Description: delete nodes and relationships. this can can be helpful when loading multiple batches of dic.

  • Parameters: None

  • Example:

from dict2graph import Dict2graph
from py2neo import Graph

dic = {"Person":{"name": "Isabelle Eberhardt"})
d2g = Dict2graph()
d2g.parse(dic)
d2g.merge(Graph())
d2g.clear()
dic = {"Person":{"name": "Sophie Blanchard"})
d2g.parse(dic)
d2g.merge(Graph())

Config Parameters

dict2graph comes with a lot of parameters. All parameters are defined as class variables of DZDdict2graph.Dict2graph Every parameter variable name starts with config_ followed by the type it accepts. e.g. config_bool_capitalize_labels only accepts a boolean value. Here is a list of all parameters:

config_bool_capitalize_labels

  • Type: Bool
  • Default: False
  • Description: Will run capitalize() on every node label. my_json_attr will become 'My_json_attr'
  • Example Value: True or False
  • Example:
dic = {"perSon": {
        "name":"Alexandrine Tinné"}}
d2g = Dict2graph()
d2g.config_bool_capitalize_labels = True
d2g.parse(dic)
d2g.create(Graph())
# results in a node `:Person{name:"Alexandrine Tinné"}`

config_dict_property_casting

  • Type: dict
  • Default: {}
  • Description: Will cast values to a certain type based for a certain and property
  • Example Value: {"MyNodeName":{"MyPropertyName":str}}
  • Example:
dic = {"Person": {
        "name":"Eva Saxl",
        "age":"34"}}
d2g = Dict2graph()
d2g.config_dict_property_casting =  {"Person":{"age":int}}
d2g.parse(dic)
d2g.create(Graph())

Results in a node (:Person{name:"Eva Saxl",age:34})

config_dict_label_override

  • Type: dict
  • Default: {}
  • Description: By default, dict2graph generates label names based on parent dic attributes. These can be overriden with config_dict_label_override. Optional you can attach extra node properties to the renamed nodes.
  • Example Value: {"JsonAttrName":"myOwnLabelname", "AnotherJsonAttr":"myOwnLabelname", "AndAnotherJsonAttr":"MyOtherLabelName"} or with extra properties {"JsonAttrName1":{"MyNewLabel":{"type":1}},"JsonAttrName2":{"MyNewLabel":{"type":2}}}
  • Example:
dic = {"Hacker": {
            "name": "Jude Milhon"},
        "Astronomer":{
            "name":"Giordano Bruno"
        }}
d2g = Dict2graph()
d2g.config_dict_label_override = {"Hacker":{"Person":{"profession":"Hacker"}},{"Astronomer":{"Person":{"profession":"Astronomer"}}}
d2g.parse(dic)
d2g.create(Graph())
# results in two nodes (:Person{name:"Jude Milhon",profession:"Hacker"}) and (:Person{name:"Giordano Bruno",profession:"Astronomer"})

config_dict_reltype_override

  • Type: dict
  • Default: {}
  • Description: By default, dict2graph generates relationship names based on parent primary label names with a _HAS_ in between. These can be overriden with config_dict_reltype_override. Optional you can attach extra node properties to the renamed nodes.
  • Example Value: {"THING_HAS_OTHERTHING":"THING_CONNECTION"}
  • Example:
dic = {
    "Person": {
        "name": "Rudolf Manga Bell",
        "Friendship": {"Person": {"name": "Ekandjoum Joseph"}},
    },
}
d2g = Dict2graph()
d2g.config_dict_reltype_override = {"PERSON_HAS_FRIENDSHIP":"FRIEND","FRIENDSHIP_PERSON_HAS":"FRIEND"}
d2g.parse(dic)
d2g.create(Graph())
# results in the two `:Person` nodes having following edges`(:Person{name:"Rudolf Manga Bell"})-FRIEND->(:Friendship)-FRIEND->(:Person{name:"Ekandjoum Joseph"})`

config_dict_property_name_override

  • Type: dict
  • Default: {}
  • Description: Rename specific node properties for a specific label, which names are resulted from the dic attribute name
  • Example Value: {"LabelName": {"my_json_attr":"my_graph_prop"}}
  • Example:
dic = {"Person": {
            "personname": "Sophie Germain",
            "personjob":"Mathematician"}
        }
d2g = Dict2graph()
d2g.config_dict_property_name_override = {"Person": {"personname":"name","personjob":"profesion"}}
d2g.parse(dic)
d2g.create(Graph())
# results in a node `:Person{name:"Sophie Germain",profesion:"Mathematician"}`

config_list_default_primarykeys

  • Type: list of strings
  • Default: ["id", "_id"]
  • Description: Define which properties can be taken as merge keys by default, undepended of the nodes label
  • Example Value: ["id", "_id", "my_hash_id"]
  • Example:
dic = {"Person": {
            "entity_id": 1
            "lastName": "Sophie Germain",
            "personjob":"Mathematician"},
        "Thing": {"entity_id":2,"name":"Sword"}
        }
d2g = Dict2graph()
d2g.config_list_default_primarykeys = ["entity_id"]
d2g.parse(dic)
d2g.merge(Graph())
# results in merging all nodes by its property `entity_id` without the need to define it for every label like you would need with `config_dict_primarykey_attr_by_label`

config_dict_primarykey_attr_by_label

  • Type: dict
  • Default: {}
  • Description: Define which properties can be taken into account as merge keys for a certain label
  • Example Value: {"MyLabel":["MyPrimaryKeyProperty"], "MyOtherLabel":["MyOtherPKProp","MySecondOtherPK"]}
  • Example:
dic = {"Person": {
            "person_id": 1
            "lastName": "Sophie Germain",
            "personjob":"Mathematician"},
        "Thing": {"thing_id":2,"name":"Sword"}
        }
d2g = Dict2graph()
d2g.config_list_default_primarykeys = {"Person":["person_id"],"Thing":["thing_id"]}
d2g.parse(dic)
d2g.merge(Graph())
# results in merging `:Person` nodes by `person_id` and `:Thing` nodes by `thing_id`

config_dict_primarykey_generated_hashed_attrs_by_label

  • Type: dict

  • Default: {}

  • Description: dict2graph can generate a hash property based on other properties. Allowed values are

    • AllAttributes - Generate an ID based on nodes properties
    • InnerContent - Generate an ID based on the Nodes properties and its children
    • OuterContent - Generate an ID based on the Nodes properties and its parent node
    • AllContent - Generate an ID based on the parent and children
    • [...] - A list of node properties which should be taken into account to generate an ID
    • None - Generate a random uuid
  • Example Value: {"Person": "AllAttributes","Address": ["streetAddress", "postalCode"],"Children":"AllInnerContent"}

  • Example:

dic = {
    "House": {
        "Floor": [
            {
                "Level": 2,
                "ground_floor": False,
                "rooms": [
                    {
                        "name": "Sleeping Room",
                        "habitant": "kids",
                        "desc": "A room for kids",
                    }
                ],
            },
            {
                "Level": 1,
                "ground_floor": True,
                "rooms": [
                    {
                        "name": "Sleeping Room",
                        "habitant": "parents",
                        "desc": "A room for parents",
                    }
                ],
            },
        ]
    }
}
d2g = Dict2graph()
d2g.config_dict_primarykey_generated_hashed_attrs_by_label = {"House":"InnerContent","Floor":"AllAttributes","rooms":["name","habitant"]}
d2g.parse(dic)
d2g.merge(Graph())
# results in a Node (:House{_id:"a5f8990bd535822ac12a85487f638af5"}), which hash is based on all children nodes
# two nodes (:Floor{_id:"a8351c9ab6f8073d57c0a4525c9e8579",...}) and (:Floor{_id:"83871439e32cddd65544e22573c70080",...}) which "_id" propert hash is based on its attributes (Level and ground_floor in this case)
# two nodes (:rooms{_id:"ed92509396972cb79b92db57c4d8f314",...}) and (:rooms{_id:"ee62bb79583742c6b1f2ce0f3083d61b",...}) which "_id" property is hashed from the property name and habitant

config_str_primarykey_generated_attr_name

  • Type: dict
  • Default: "_id"
  • Description: Define the property name for the generated id hash, produced by config_dict_primarykey_generated_hashed_attrs_by_label
  • Example Value: "hash_id" or "_my_id"
  • Example:
dic = {"Person": {
            "Name": "Hypatia"},
        }
d2g = Dict2graph()
d2g.config_dict_primarykey_generated_hashed_attrs_by_label = {"Person":"AllAttributes"}
d2g.config_str_primarykey_generated_attr_name = "_hash_id"
d2g.parse(dic)
d2g.merge(Graph())
# results in a node (:Person{_hash_id:"some-md5-hash-string", Name:"Hypatia"})

config_list_blocklist_collection_hubs / config_list_allowlist_collection_hubs

  • Type: list
  • Default: []
  • Description: Suppress the creation of certain collection hubs by label name. When using config_list_blocklist_collection_hubs only collection hubs with label names that are NOT in this list will be created.

When using config_list_allowlist_collection_hubs, only collection hubs with a label name in this list will be created.

Hint You can use config_list_allowlist_collection_hubs also to disable collection creation. Just insert a non occurring label name in the list (e.g. ["#IAM_NEVER_A_LABEL_NAME!"])

  • Example Value: ["CollectionHub,OneMoreCollectionLabel"]
  • Example:
dic = {"Philosophers":{"Person": [{"name": "Hypatia"}, {"name": "Epikur"}, {"name": "Sokrates"}]}}
d2g = Dict2graph()
d2g.config_list_blocklist_collection_hubs = ["PhilosophersCollection"]
d2g.parse(dic)
d2g.create(Graph())

results in three Nodes (:Person{Name:"Hypatia"}), (:Person{Name:"Epikur"}), (:Person{Name:"Sokrates"}) directly connected to the parent node (:Philosophers) (instead of a intermediate collection hub node)

config_list_blocklist_reltypes / config_list_allowlist_reltypes

  • Type: list
  • Default: []
  • Description: Suppress the creation of certain relations by relation type name. When using config_list_blocklist_reltypes only relations with a type name that is NOT in this list will be created.

When using config_list_allowlist_reltypes, only relations with a type name in this list will be created.

  • Example Value: ["MYNODE_HAS_OTHERNODE"]
  • Example:
dic = {
    "Person": {
        "name": "Rudolf Manga Bell",
        "Friendship": {"Person": {"name": "Ekandjoum Joseph"}},
    }
d2g = Dict2graph()
d2g.config_list_blocklist_reltypes = ["PERSON_HAS_FRIENDSHIP"]
d2g.parse(dic)
d2g.create(Graph())

results in two :Person nodes having no edge connecting them

config_list_blocklist_nodes / config_list_allowlist_nodes

⚠️ Draft: This option is work in progress and its behavior will change in a future release. Keep in mind when using this option

  • Type: list
  • Default: []
  • Description: Suppress the creation of nodes (and their attached relations). Any relations to and from this node will be lost too.

When using config_list_blocklist_nodes only nodes that are not in this list will be created

When using config_list_allowlist_nodes only nodes that are in this list will be created

  • Example Value: ["MyNode"]
  • Example:
dic = {
    "Person": {
        "name": "Rudolf Manga Bell",
        "Friendship": {"Person": {"name": "Ekandjoum Joseph"}},
    }}
d2g = Dict2graph()
d2g.config_list_blocklist_nodes = ["Friendship"]
d2g.parse(dic)
d2g.create(Graph())

results only two Nodes (:Person{name:"Rudolf Manga Bell"}) and (:Person{name:"Ekandjoum Joseph"})

config_dict_blocklist_props / config_dict_allowlist_props

  • Type: dict
  • Default: {}
  • Description: Suppress the addition of certain properties to a node. This is configured on a per node base.

When using config_dict_allowlist_props, for a certain label, only these props will be attached to the node label.

When using config_dict_blocklist_props, for a certain label, only other props will be attached to the node label.

  • Example Value: {"MyNodeLabel":["myUnwantedProp1","UnwantedProp2"]}
  • Example:
dic = {
    "Person": {
        "name": "Rudolf Manga Bell",
        "internal_id":"Xsdsw2",
    }
d2g = Dict2graph()
d2g.config_dict_allowlist_props = {"Person":["name"]}
d2g.parse(dic)
d2g.create(Graph())

results in a node (:Person{name:"Rudolf Manga Bell"}}. The internal_id property is ditched

config_dict_in_between_node

⚠️ WIP - Can crash due to bug - https://git.connect.dzd-ev.de/dzdtools/pythonmodules/-/issues/11

  • Type: dict
  • Default: {}
  • Description: Creates an extra node between to nodes. hint It maybe makes sense to use config_dict_primarykey_generated_hashed_attrs_by_label with the AllContent option to make the extra node unique
  • Example Value: {"MyNodeLabel": {"MYNODELABEL_HAS_OTHERNODELABEL": "ExtraNodeLabel"}}
  • Example:
dic = {
    "Persons": [
        {"Philosopher": {"name": "Hypatia"}},
        {"Philosopher": {"name": "Epikur"}},
    ]
}
d2g = Dict2graph()
d2g.config_list_allowlist_collection_hubs = ["None"]
d2g.config_dict_in_between_node = {
    "Persons": {"PERSONS_HAS_PHILOSOPHER": "JobPhilosopher"}
}
d2g.parse(dic)
d2g.merge(Graph())

Results in extra nodes :JobPhilosopher between :Persons and :Philosopher and two new relations per node

config_dict_flip_nodes

⚠️ WIP - Untested

  • Type: dict
  • Default: {}
  • Description: Flips the sequence (as seen in the source dic tree) of two nodes. use this only on simple triples. Can cause weird effects on more complex dic trees
  • Example Value: {"LeadingNodeLabel":"NextNodeLabel"}
  • Example:
dic = {
    "Article": {
        "Title": "Super Duper Article",
        "magazin": {"name": "Ant simulations", "issue": {"Year": 2012, "no": 2,}},
    }
}
d2g = Dict2graph()
d2g.config_dict_flip_nodes = {"magazin": "issue"}
d2g.parse(dic)
d2g.merge(Graph())

Results in (:Article)->(:issue)->(:magazin) instead of (:Article)->(:magazin)->(:issue)

config_dict_hubbing

⚠️ WIP - This feature is still beta

  • Type: dict
  • Default: {}
  • Description: Hubbing is the process of connecting multiple chained nodes with a new hub node. Depeding on how the unique id of the hub is generated the merging behavior can differ. More on this here The parameter per label (aka start/root node) must be a dict of following keys. (optional multiple dicts, with following keys, can be packed into a list, if one root node has more than one hub attached) hub_member_labels - list - A list of nodes that should be hubbed hub_id_from - str - optional - default: lead - lead or edge . Decide on how to build the hubs unique ID
  • Example Value: "StartNodeLabel": {"hub_member_labels": ["FillNodeLabel", "EndNodeLabel"], "hub_id_from": "lead"} or "StartNodeLabel": [{"hub_member_labels": ["FillNodeLabel", "EndNodeLabel"], "hub_id_from": "lead"},{"hub_member_labels": ["FillNodeLabel2", "EndNodeLabel2"], "hub_id_from": "edge"}]
  • Example:

lets imagine following data. We have articles written by authors. These Authors have written with an affiliation to an organisation

dic = {
    "Article": {
        "title": "Science Behind The Cyberpunk-Genres Awesomeness",
        "Authors": [
            {
                "firstName": "Mike",
                "lastName": "Pondsmith",
                "affiliation": [{"name": "University 1"}],
            },
        ],
    }
}
json2 = {
    "Article": {
        "title": "Transhumanism in Computergames",
        "Authors": [
            {
                "firstName": "Mike",
                "lastName": "Pondsmith",
                "affiliation": [{"name": "University 1"}, {"name": "University 2"}],
            },
        ],
    }
}
d2g.config_list_allowlist_collection_hubs = ["NONE"]
d2g.parse(dic)
d2g.parse(json2)
d2g.merge(Graph())

This results in following graph:

result-exmaple

The issue here is, we can not determine to which organisations Mike Pondsmith was affiliated while writing one of the articles. Only that he was affiliaten to these organisations at any point.

Lets try this data again, but this time we do hubbing on the Article-Authors-affiliation triplets.

dic = {
    "Article": {
        "title": "Science Behind The Cyberpunks-Genre Awesomeness",
        "Authors": [
            {
                "firstName": "Mike",
                "lastName": "Pondsmith",
                "affiliation": [{"name": "University 1"}],
            },
        ],
    }
}
json2 = {
    "Article": {
        "title": "Transhumanism in Computergames",
        "Authors": [
            {
                "firstName": "Mike",
                "lastName": "Pondsmith",
                "affiliation": [{"name": "University 1"}, {"name": "University 2"}],
            },
        ],
    }
}
d2g.config_list_allowlist_collection_hubs = ["NONE"]
# hubbing config:
d2g.config_dict_hubbing = {
    "Article": {
        "hub_member_labels": ["Authors", "affiliation"],
        "hub_label": "Contribution",
        "hub_id_from": "edge",
    }
}
d2g.parse(dic)
d2g.parse(json2)
d2g.merge(Graph())

This results in folowing graph:

result-exmaple

We can now see with which affiliation Mike created which article.

We defined Article as the root node for our hub and Authors and affiliation as the member nodes of the hub. the name of the hub label should be Contribution. The id of the hub should be created based on the edge nodes (The nodes at the start and end of the chain); Articles and affiliation in this example, this enables to connect multiple :Authors with the same :affiliation to one hub

The alternative to "hub_id_from": "edge" would be "hub_id_from": "lead". The hub id would be created from nodes with children (leading nodes); Articles and Author. This would make sense if few Authors would have many shared affiliatons. We assume its the other way around, thats why we use the edge option

Hubbing is great for larger datasets, when done correct, we can pack together many members to a few hubs and save a lot of relations. For smaller datasets building a triangles can be more appropriate and keep the resulting graph simpler.

Triangle building is not yet implemented (see #12 for updates)

config_str_collection_hub_label

  • Type: dict
  • Default: "{LIST_MEMBER_LABEL}Collection"
  • Description: Json lists will be translated to multiple nodes connected by a so called Collection Hub node. With config_str_collection_hub_label you can define the node label for the Collection Hub node. The string {LIST_MEMBER_LABEL} will be replaced by the list members node label (which is a the dic attribute containing the list).
  • Example Value: "{LIST_MEMBER_LABEL}_List" or "Hub4{LIST_MEMBER_LABEL}"
  • Example:
dic = {"Person": [{"name": "Hypatia"}, {"name": "Epikur"}, {"name": "Sokrates"}]}
d2g = Dict2graph()
d2g.config_str_collection_hub_label = "{LIST_MEMBER_LABEL}_Collection}"
d2g.parse(dic)
d2g.create(Graph())
# results in three Nodes (:Person{Name:"Hypatia"}), (:Person{Name:"Epikur"}), (:Person{Name:"Sokrates"}) connected to a node (:Person_Collection)

config_list_collection_hub_extra_labels

  • Type: list of strings
  • Default: ["CollectionHub"]
  • Description: Adds further labels to Collection Hubs. See config_str_collection_hub_label for more explanation
  • Example Value: ["CollectionHub,OneMoreCollectionLabel"]
  • Example:
dic = {"Person": [{"name": "Hypatia"}, {"name": "Epikur"}, {"name": "Sokrates"}]}
d2g = Dict2graph()
d2g.config_str_collection_hub_label = "{LIST_MEMBER_LABEL}_Collection}"
d2g.config_list_collection_hub_extra_labels = ["ColHub"]
d2g.parse(dic)
d2g.create(Graph())
# results in three Nodes (:Person{Name:"Hypatia"}), (:Person{Name:"Epikur"}), (:Person{Name:"Sokrates"}) connected to a node (:Person_Collection:ColHub) which again will be connected to a Node (:Philosophers)

config_bool_collection_hub_attach_list_members_label

  • Type: bool
  • Default: False
  • Description: If set to True, Collection Hubs will get an additional label. This label will be the same as the list members primary label
  • Example Value: False or True
  • Example:
dic = {"Philosophers": [{"Person":{"name": "Hypatia"}}, {"Person":{"name": "Epikur"}}, {"Person":{"name": "Sokrates"}}]}}
d2g = Dict2graph()
d2g.config_bool_collection_hub_attach_list_members_label = True
d2g.parse(dic)
d2g.create(Graph())
# results in three Nodes (:Person{Name:"Hypatia"}), (:Person{Name:"Epikur"}), (:Person{Name:"Sokrates"}) connected to a node (:PersonCollection:CollectionHub:Person)

config_bool_collection_hub_only_when_len_min_2

  • Type: bool
  • Default: False
  • Description: Skip Collection Hub / Reduce to normal 1 to 1 relation if list only contains one list member
  • Example Value: False or True
  • Example:
dic = {"Philosophers": [{"Person":{"name": "Hypatia"}}]}}
d2g = Dict2graph()
d2g.config_bool_collection_hub_only_when_len_min_2 = True
d2g.parse(dic)
d2g.create(Graph())
# results in two Nodes (:Person{Name:"Hypatia"}) and (:Philosophers) with a direct relation, instead of a CollectionHub

config_list_deconstruction_limit_nodes

  • Type: dict
  • Default: {}
  • Description: If set to a valid node name, the certain nodes will have no children, instead all children will be merged into the nodes attributes. Also knows as "flatten" a nested entity (https://rosettacode.org/wiki/Flatten_a_list) Nested lists will be represented by the prop name with and index number attached
  • Example Value: [myNodeLabel]
  • Example:
dic = {"Person": {"firstname": "Dan", "lastname": "Cooper", "middlenames": ["D.", "B."]}}
d2g = Dict2graph()
d2g.config_list_deconstruction_limit_nodes = ["middlenames"]
d2g.parse(dic)
d2g.merge(Graph())

Results in one node (:Person{"middlenames_1":"B.","middlenames_0":"D.","firstname":"Dan","lastname":"Cooper"}) instead of three nodes. This would be the result without config_list_deconstruction_limit_nodes* : (:Person{"firstname":"Dan","lastname":"Cooper"}) -> (:middlename{"middlenames":"B."}) & (:middlename{"middlenames":"D."})

config_dict_concat_list_attr

  • Type: dict
  • Default: {}
  • Description: If set to True, Collection Hubs will get an additional label. This label will be the same as the list members primary label
  • Example Value: {"MyLabel":[{"MyListProperty":","}]}
  • Example:
dic = {"Person": {"firstname": "Dan", "lastname": "Cooper", "middlenames": ["D.", "B."]}}
d2g = Dict2graph()
d2g.config_dict_concat_list_attr = {"Person": {"middlenames": " "}}
d2g.parse(dic)
d2g.merge(Graph())
# results in one Node (:Person{middlenames:"D. B.",...}) instead of related extra nodes for every middlenames entry

config_func_node_post_modifier and config_func_node_pre_modifier

⚠️ Warning: These are a very powerful configuration options. Use as a last resort if you cant find any other solution and if you know what you are doing. Test thoroughly against your data if using!

  • Type: function
  • Default: None
  • Description: provide a function which can manipulate the resulting nodes. config_func_node_pre_modifier will be run before the node will be populated with data and config_func_node_post_modifier will be run when the node is processed and populated with data
  • Example Value: lambda node : node.add_label("FunnyLabel")
  • Example:
dic = {"House": {"Person": {"name": "Hypatia"}}}
d2g = Dict2graph()
def custom_pre_func(node):
    if node is not None and node.__primarylabel__ == "Person":
        node.add_label("ExtraPersonLabel")
    return node
def custom_post_func(node):
    if (
        node is not None
        and node.__primarylabel__ == "Person"
        and node["name"] == "Hypatia"
    ):
        node["ExtraProp"] = "ExtraValue"
    return node
d2g.config_func_node_post_modifier = custom_post_func
d2g.config_func_node_pre_modifier = custom_pre_func
d2g.parse(dic)
d2g.merge(Graph())
# results in two Nodes (:Person:ExtraPersonLabel{name:"Hypatia",ExtraProp:"ExtraValue"}) and (:House) with a relation named "HOUSE_HAS_PERSON"

config_graphio_batch_size

dic = {"Philosophers":{"Person": [{"name": "Hypatia"}, {"name": "Epikur"}, {"name": "Sokrates"}]}}
d2g = Dict2graph()
d2g.config_graphio_batch_size = 2
d2g.parse(dic)
d2g.create(Graph())
# This will push only 2 nodes at a time to the database. Which would be very inefficient when having larger datasets :)

config_dict_create_merge_depending_scheme

  • Type: dict
  • Default: {"create": [], "merge": []}
  • Description: Instead just merging or just creating with config_dict_create_merge_depending_scheme one can decide per type, which clause should be used. You have to use Json2grahio.create_merge_depending(). You can define node by primary label or relation by type name
  • Example Value: {"create": ["myLabel","MYLABEL_HAS_OTHERLABEL"], "merge": ["AnotherLabel"]}
  • Example:
dic = {"Philosophers":{"Person": [{"name": "Hypatia"}, {"name": "Epikur"}, {"name": "Sokrates"}]}}
d2g = Dict2graph()
d2g.config_dict_create_merge_depending_scheme = {"create": ["Philosophers"], "merge": ["Person"]}
d2g.parse(dic)
# with Dict2graph.create_merge_depending(default) you can define the default operation for nodes or relations not defined in config_dict_create_merge_depending_scheme
d2g.create_merge_depending(Graph(),default="create")
# This will create :Philosophers node and merge :Person nodes

config_dict_property_to_extra_node

  • Type: dict
  • Default: {}
  • Description: Spin of an extra node based on a node property. Optional you can copy the property to a new node instead of moving it.
  • Example Value: {"MyLabel": ["MyProp1","MyProp2"],"MyOtherLabel":["MyOtherProp"], "MyLabelWithCopiedVal":{"Prop1":"copy","prop2:"move","prop3":"move"}}
  • Example:
dic = {"Philosophers":{"Person": [{"name": "Hypatia", "period":"Late antiquity"}, {"name": "Epikur","period":"Roman Republic"}, {"name": "Sokrates","period":"Athenian democracy"}]}}
d2g = Dict2graph()
d2g.config_dict_property_to_extra_node = {"Person":["period"]}
d2g.parse(dic)
d2g.merge(Graph())
# This will create extra nodes for "period" (e.g. (:period{perdiod:"Late antiquity"}) ) instead of attaching it as an property of :Person. The :period node will be connected to the :Person node

config_dict_interfold_json_attr

  • Type: dict
  • Default: {}
  • Description: Elevate the attributes of an sub dic object to its parent. (e.g. {"Parent":{"data":{"Familyname":"Gump"}}} will be transformed to {"Parent":{"Familyname":"Gump"}). This helps to populate a node with data from nested dic objects. Per dic-object/label you have two optional parameters:
    1. "attrs" is a list to define which attribute you want to elevate. If "attrs" is not declared all dic attributes will be elevated.
    2. "combine_attr_names" is a boolean value to define if you want to cmbine the parent object name with the child attrs name. This can help to distinguish the attributes and prevent name collisions
  • Example Value: {"dic-object-attr-aka-label":{"dic-object-attrs":{"combine_attr_names":True}} or {"dic-object-attr-aka-label":{"dic-object-attr":None}}
  • Example:
dic = {"Philosophers":{"Person": [{"id":1,"data":{"name": "Hypatia"}},{"id":1,"data":{"name": "Hypatia"}},{"id":1,"data":{"name": "Hypatia"}}]}}
d2g = Dict2graph()
d2g.config_dict_interfold_json_attr = {"Person":{"data":{"combine_attr_names":False}}
d2g.parse(dic)
d2g.merge(Graph())
# This will create :Person nodes with a "name" property. Without `config_dict_interfold_json_attr` it would result in :Person nodes with an extra child node :data (having the "name" property)

config_dict_attr_name_to_reltype_instead_of_label

  • Type: dict
  • Default: {}
  • Description: Force certain labels to override with new label (similar to config_dict_label_override), but save original label to relation type.
  • Example Value: {"oldLabel":"NewLabel", "otherOldLabel":"NewLabel"}
  • Exmaple
dic = {"Person": {"name": "Ben", "daughters": ["Kielyr"], "sons": ["Bodevan"],}}
d2g = Dict2graph()
d2g.config_dict_attr_name_to_reltype_instead_of_label = {
    "daughters": "Child",
    "sons": "Child",
}
# Ditch collection hubs for children
d2g.config_list_skip_collection_hubs = ["ChildCollection"]
d2g.parse(dic)
d2g.create(Graph())

Results in a graph like (:Child)<-DAUGHTERS-(:Person)-SONS->(:Child) instead of (:daughters)<-PERSON_HAS_DAUGHTERS-(:Person)-PERSON_HAS_SONS->(:sons)

config_dict_node_prop_to_rel_prop

  • Type: dict
  • Default: {}
  • Description: Move certain node properties to one of the relations connected to the node. Per node label and property you can set a list of relationships the property should move to.
  • Example Value: {"MyNodeLabel":{"MyNodeLabelProperty":["MYRELATION_HAS_NAME"], "myotherprop":["MYOTHERREL"]}
  • Example
dic = {
    "Person": {
        "name": "Ben",
        "child": [
            {"type": "Son", "name": "Kielyr"},
            {"type": "Daughter", "name": "Bodevan"},
        ],
    }
}

d2g = Dict2graph()
d2g.config_list_allowlist_collection_hubs = ["None"]
d2g.config_dict_node_prop_to_rel_prop = {"Person": {"type":["PERSON_HAS_CHILD"]}}
d2g.config_dict_primarykey_attr_by_label = {"child": ["name"]}
d2g.parse(dic)
d2g.merge(Graph())

Results in a graph like (:child)<-[PERSON_HAS_CHILD{type:"Son"}-(:Person)-[PERSON_HAS_CHILD{type:"Daugther"}->(:child)

config_list_throw_away_from_nodes

  • Type: dict
  • Default: {}
  • Description: Ignore all data attached to certain node and node itself
  • Example Value: ["NodelabelIdontWant","OtherLabel"]
  • Example
dic = {
    "Philosophers": {
        "Person": [
            {
                "id": 1,
                "name": "Hypatia",
                "unwanted_data": {"stuff": "we", "dont": "want"},
            },
            {"id": 2, "name": "Other"},
        ]
    }
}
d2g = Dict2graph()
d2g.config_list_throw_away_from_nodes = ["unwanted_data"]
d2g.parse(dic)
d2g.merge(Graph())

Results in a graph like (:Person{"name":"Hypatia","id":1})<-(:Philosophers)->(:Person{"name":"Other","id":2}). note that (:unwanted_data{"stuff": "we", "dont": "want"}) is missing

config_list_throw_away_nodes_with_no_or_empty_attrs

  • Type: dict
  • Default: {}
  • Description: Throw away empty nodes of a certain label. Empty means; no attributes or all attributes have a None value
  • Example Value: ["NodelabelIdontWant","OtherLabel"]
  • Example
dic = {"Person": [{"name": "Mahony"}, {}]}
d2g = Dict2graph()
d2g.config_list_allowlist_collection_hubs = [None]
d2g.config_list_throw_away_nodes_with_no_or_empty_attrs = ["Person"]
d2g.parse(dic)
d2g.merge(Graph())

This will only insert only one person node (:Person{"name": "Mahony"}) instead of another empty one :Person{}

config_list_throw_away_nodes_with_empty_key_attr

  • Type: dict
  • Default: {}
  • Description: Throw away nodes with missing primary/merge property of a certain label. Empty means; no attributes or primary attributes have a None value
  • Example Value: ["NodelabelIdontWant","OtherLabel"]
  • Example
dic = {"Person": [{"name": "Mahony", "age": 23}, {"age": 25}]}
d2g = Dict2graph()
d2g.config_list_allowlist_collection_hubs = [None]
d2g.config_dict_primarykey_attr_by_label = {"Person": ["name"]}
d2g.config_list_throw_away_nodes_with_empty_key_attr = ["Person"]
d2g.parse(dic)
d2g.merge(Graph())

This will only insert one person node (:Person{"name": "Mahony", "age": 23}) instead of another additional node with only the age (:Person{"age": 25}) (or actually throwing an py2neo error, because of the missing merge key)

More Examples

A collection of use cases and examples

Use config_dict_interfold_json_attr for skipping in-between nodes

from dict2graph import Dict2graph
from py2neo import Graph

dic = {
    "Person": {
        "name": "Rudolf Manga Bell",
        "Friend": {"Person": {"name": "Ekandjoum Joseph"}},
    },
}
d2g = Dict2graph()
d2g.parse(dic)
d2g.create(Graph())

results in (:Person)<--(:Friend)-->(:Person)

The :Friend node is kind of unecessary and can be replaced with a direct relationship. The desired graph would be (:Person)<-FRIEND_WITH->(:Person). This can be achieved with:

from dict2graph import Dict2graph
from py2neo import Graph

dic = {
    "Person": {
        "name": "Rudolf Manga Bell",
        "Friend": {"Person": {"name": "Ekandjoum Joseph"}},
    },
}
d2g = Dict2graph()
d2g.config_dict_interfold_json_attr = {"Person": {"Friend": None}}
d2g.config_dict_reltype_override = {"PERSON_HAS_PERSON": "FRIEND_WITH"}
d2g.parse(dic)
d2g.create(Graph())

Other Options

set_insert_failed_callback

  • Type: function
  • Default: None
  • Description: callback function if merging or creating of a certain nodeset/relationship set fails. parameters are setname and error. setname will be the Reltype or Nodeset primary label.
  • Example:
def cb(setname,e,setcontent):
    if e in (TransactionError, TransientError):
        print("Lock failure for inserting label or reltype named '{}'".format(setname))
        dump_to_file(setcontent)
    else:    
        raise e

d2g = Dict2graph()
d2g.set_insert_failed_callback = cb

max_retries_on_insert_errors

int

when insert failes due to lock error retry n times

max_retry_wait_time_sec

int

when retrieing due to failed insert wait a random time from 1 second to max_retry_wait_time_sec seconds

disable_config_sanity_check

True or False

when calling Dict2graph.parse a basic config check will be done. Can be disabled when config has proven. Could improve perfomance (but not really ATM, as the check is very basic and simple (aka fast))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dict2graph-2.0.0.tar.gz (259.2 kB view details)

Uploaded Source

Built Distribution

dict2graph-2.0.0-py3-none-any.whl (24.9 kB view details)

Uploaded Python 3

File details

Details for the file dict2graph-2.0.0.tar.gz.

File metadata

  • Download URL: dict2graph-2.0.0.tar.gz
  • Upload date:
  • Size: 259.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for dict2graph-2.0.0.tar.gz
Algorithm Hash digest
SHA256 6f7dba77586af947094f0f725ebfde497e4e7911c9138642554acdd65cffbcca
MD5 9753b6d01c5e1dcda0c1ce327cb4fcd1
BLAKE2b-256 6c66bfd6dffd7ee7040698ed85561aa20e99af6e48351bfa146d38e5d57889a2

See more details on using hashes here.

File details

Details for the file dict2graph-2.0.0-py3-none-any.whl.

File metadata

  • Download URL: dict2graph-2.0.0-py3-none-any.whl
  • Upload date:
  • Size: 24.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for dict2graph-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c54399bed14729c013813848745734db1df0a994cbe2f98353afb6c1a4489e9b
MD5 5278216d0b6656991ffbca4b4b7ef0fa
BLAKE2b-256 2bc55f5638045f1bd5ee4b093f8c18f486c57debcda6ad0cd9237839261788ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page