Class to extract, transform and load (ETL) dicts/json to a Neo4j graph
Project description
Dict2graph
Transfer (json compatible) Python dicts into a Neo4j graph database.
dict2graph also comes with some powerful data transform capabilities.
Maintainer: bleimehl@dzd-ev.de
Licence: MIT
public issue tracker: https://github.com/dzd-ev/dict2graph-docs/issues
user docs: https://dzd-ev.github.io/dict2graph-docs/
source code: https://git.connect.dzd-ev.de/dzdpythonmodules/dict2graph
important upstream modules:
- https://github.com/kaiserpreusse/graphio
- https://github.com/neo4j/neo4j-python-driver
- https://github.com/py2neo-org/py2neo
Content:
Install
pip3 install dict2graph
What is dict2graph
With dict2graph you can transfer python dicts into a neo4j graph out of the box.
And if you are not happy with the structure of the result, dict2graph comes with a bunch of, transformation tools, which are easy to apply to your model.
Recommended workflow
The recommended workflow is:
- Load your dict (or a sample of your larger datasets) as it is, with dict2graph into a neo4j test instance
- Inspect the result in neo4j
- Add dict2graph-transformators to shape your resulting graph model
- Wipe your neo4j test instance
- Repeat the work flow with the changed dict2graph-transformators until your happy with the result
What dict2graph is not
dict2graph can not be used for de-/serializing your dict into a graph database. There is no graph2dict
functionality (nore is it planned to have one).
Your data/dict will be transformed to be more suitable in a graph represantation. On the way, certain informations can be lost. Reproducing the exact same dict from the graph is not possible in many cases.
py2neo depcrecation warning
In past versions of dict2graph
, the awesome py2neo
library was the only way to connect to a Neo4j instance.
But (sadly) this lib is in a low-maintanance mode. For now it is still supported but marked as deprecated. We recommend to switch to the official Neo4j Python Driver.
Basic Usage Example
With formalities out of the way, lets have some simple examples how dict2graph works...
Load a dict
from dict2graph import Dict2graph
from neo4j import GraphDatabase
# connect to our neo4j database
NEO4J_DRIVER = GraphDatabase.driver("neo4j://localhost")
# lets create a small random dict
dic = {
"Action": {
"id": 1,
"target": "El Oued",
"Entities": [{"id": "Isabelle Eberhardt"}, {"id": "Slimène Ehnni"}],
}
}
# create a dict2graph instance,
# parse the dict
# and load it into our neo4j instance.
Dict2graph().parse(dic).create(NEO4J_DRIVER)
This will result in following graph:
Transform the model
We now have loaded the dict data into a Neo4j Graph. But usally we dont need stuff like explicit list
s in a graph. Also it is common to uppercase relationship types and capitalize labels.
So we need to make some adjustments to improve the graph represenation of the dict.
This is where dict2graph.Transformer
s come into play.
from dict2graph import Dict2graph, Transformer, NodeTrans, RelTrans
from py2neo import Graph
NEO4J_DRIVER = GraphDatabase.driver("neo4j://localhost")
data = {
"Action": {
"id": 1,
"target": "El Oued",
"Entities": [{"id": "Isabelle Eberhardt"}, {"id": "Slimène Ehnni"}],
}
}
d2g = Dict2graph()
d2g.add_transformation(
[
Transformer.match_nodes().do(NodeTrans.CapitalizeLabels()),
Transformer.match_rels().do(RelTrans.UppercaseRelationType()),
Transformer.match_nodes().do(NodeTrans.PopListHubNodes()),
]
)
d2g.parse(data)
d2g.create(NEO4J_DRIVER)
Now that looks more like a graph we are used to, isn't it?
There are a lot of more powerful Transformator
s and you can even make your own 🚀!
Have a deeper look into the docs to learn more how Transformators work.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file dict2graph-3.0.3.tar.gz
.
File metadata
- Download URL: dict2graph-3.0.3.tar.gz
- Upload date:
- Size: 984.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 99628de93770a890f2ce61963a49ff8ef4931643e339fdfbcf74555650766c1b |
|
MD5 | 7b4437e850850c73d2c79cfd3d3dcc3a |
|
BLAKE2b-256 | c4ec630437bfb0327e01259eab4108268099efe6be5fb837d658335310215110 |
File details
Details for the file dict2graph-3.0.3-py3-none-any.whl
.
File metadata
- Download URL: dict2graph-3.0.3-py3-none-any.whl
- Upload date:
- Size: 25.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 930b4976a2c00054c32cb0fd7e8b34fc0b2497d2c124cc1f517a04f3d5d38421 |
|
MD5 | 0f67c4e497be644efc3599e8e8130407 |
|
BLAKE2b-256 | 0fff0e5beb83ad79b77339b4c3302efbc93416c2508fa2254c6210131649545a |