Skip to main content

Distances and divergences between distributions implemented in python.

Project description

travis coveralls sonar_quality sonar_maintainability Maintainability Test Coverage pip

Distances and divergences between dictionaries implemented in python 3.6.

In the complexity notations, n is len(a) and m is len(b).

The samples are dictionaries generated by the test utilities here.

How do I get it?

Just type into your terminal:

pip install dictances

Basic example

For each metric, an example is present in the folder examples. Here’s a basic example for those too lazy to click links (like me).

import random
from dictances import cosine, euclidean, canberra
random.seed(42)  # for reproducibility

# Simple function to generate the example dictionaries

def generate_example_dict(n=1000):
    return {random.randint(0, 1000): random.uniform(0, 1000) for i in range(n)}

a, b = generate_example_dict(), generate_example_dict()

print(cosine(a, b))
# >>> 0.52336690346601

print(euclidean(a, b))
# >>> 15119.400349404095

print(canberra(a, b))
# >>> 624.9088876554047

Metrics table

Metric name Usage example Average time on sample Complexity
Euclidean distance euclidean 90.4 µs ± 2.5 µs On+m
Squared variation squared_variation 90.8 µs ± 1.43 On+m
Total variation total_variation 92.3 µs ± 1.28 µs On+m
Nth variation nth_variation 91.1 µs ± 1.2 µs On+m
Manhattan distance manhattan 92.7 µs ± 1.43 µs On+m
Mean absolute error mae 92.3 µs ± 1.28 µs On+m
Mean squared error mse 91.1 µs ± 1.2 µs On+m
Chebyshev distance chebyshev 101 µs ± 2.14 µs On+m
Minkowski distance minkowsky 91.1 µs ± 2.05 µs On+m
Canberra distance canberra 71.8 µs ± 1.95 µs On+m
Cosine distance cosine 61.3 µs ± 835 ns On+m
Pearson distance pearson 46.9 µs ± 1.23 µs On+m
Hamming distance hamming 28.7 µs ± 784 ns Omin
Normalized Total Variation normal_total_variation 34.6 µs ± 543 ns Omin
Kullback Leibler divergence kullback_leibler 24 µs ± 587 ns Omin
Jensen Shannon divergence jensen_shannon 38.2 µs ± 1.18 µs Omin
Bhattacharyya distance bhattacharyya 32.7 µs ± 655 ns Omin
Hellinger distance hellinger 42 µs ± 467 ns Omin

Test computer specifications

The computer on which the metrics where timed had the following specifications:

Computer specifications
Model Name MacBook Pro
Processor Name Intel Core i7
Processor Speed 2.3 GHz
Number of Processors 1
Total Number of Cores 4
L2 Cache (per Core) 256 KB
L3 Cache 6 MB
Memory 16 GB

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
dictances-1.5.0.tar.gz (9.4 kB) Copy SHA256 hash SHA256 Source None Jun 8, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page