Skip to main content

A pytorch library that implements differentiable and learnable robot models, which allows users to learn parameters of analytical robot models, and/or propagate gradients through analytical robot computations such as forward kinematics.

Project description

differentiable robot model

Differentiable and learnable robot model. Our differentiable robot model implements computations such as forward kinematics and inverse dynamics, in a fully differentiable way. We also allow to specify
parameters (kinematics or dynamics parameters), which can then be identified from data (see examples folder).

Currently, our code should work with any kinematic chain (eg any 7-DOF manipulator should work). It's been tested and evaluated particularly for the Kuka iiwa.

Setup

conda create -n robot_model python=3.7
conda activate robot_model
python setup.py develop

Note that the data files might not be found if the setup is not run with develop (Fixme)

Examples

2 examples scripts show the learning of kinematics parameters

python examples/learn_kinematics_of_iiwa.py

and the learning of dynamics parameters

python examples/learn_dynamics_of_iiwa.py

L4DC paper and experiments

the notebook experiments/l4dc-sim-experiments shows a set of experiments that are similar to what we presented in our L4DC paper

@InProceedings{pmlr-v120-sutanto20a, 
    title = {Encoding Physical Constraints in Differentiable Newton-Euler Algorithm}, 
    author = {Sutanto, Giovanni and Wang, Austin and Lin, Yixin and Mukadam, Mustafa and Sukhatme, Gaurav and Rai, Akshara and Meier, Franziska}, 
    pages = {804--813}, 
    year = {2020},
    editor = {Alexandre M. Bayen and Ali Jadbabaie and George Pappas and Pablo A. Parrilo and Benjamin Recht and Claire Tomlin and Melanie Zeilinger}, 
    volume = {120}, 
    series = {Proceedings of Machine Learning Research}, 
    address = {The Cloud}, month = {10--11 Jun}, 
    publisher = {PMLR}, pdf = {http://proceedings.mlr.press/v120/sutanto20a/sutanto20a.pdf},
    url = {http://proceedings.mlr.press/v120/sutanto20a.html}, 
}

Testing

running pytest in the top-level folder will run our differentiable robot model tests, which compare computations against pybullet.

License

differentiable-robot-model is released under the MIT license. See LICENSE for additional details about it. See also our Terms of Use and Privacy Policy.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

differentiable-robot-model-0.1.1.post2.tar.gz (15.6 MB view details)

Uploaded Source

File details

Details for the file differentiable-robot-model-0.1.1.post2.tar.gz.

File metadata

  • Download URL: differentiable-robot-model-0.1.1.post2.tar.gz
  • Upload date:
  • Size: 15.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/50.3.0.post20201006 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for differentiable-robot-model-0.1.1.post2.tar.gz
Algorithm Hash digest
SHA256 726b345fdd80db4f8220de8c0acbfdbd983f391c5c63e05465e9531897168e76
MD5 e28b72c0a441ea1c86ea4c4306ee8fa8
BLAKE2b-256 af2641745942f63cca5f63d98cbf0419f19f01eac86c7c3731057b041d5de1c3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page