Argmax Model Optimization Toolkit for Diffusion Models.
Project description
DiffusionKit
Run Diffusion Models on Apple Silicon with Core ML and MLX
This repository comprises
diffusionkit
, a Python package for converting PyTorch models to Core ML format and performing image generation with MLX in PythonDiffusionKit
, a Swift package for on-device inference of diffusion models using Core ML and MLX
Installation
The following installation steps are required for:
- MLX inference
- PyTorch to Core ML model conversion
Python Environment Setup
conda create -n diffusionkit python=3.11 -y
conda activate diffusionkit
cd /path/to/diffusionkit/repo
pip install -e .
Hugging Face Hub Credentials
Click to expand
Stable Diffusion 3 requires users to accept the terms before downloading the checkpoint.
FLUX.1-dev also requires users to accept the terms before downloading the checkpoint.
Once you accept the terms, sign in with your Hugging Face hub READ token as below:
[!IMPORTANT] If using a fine-grained token, it is also necessary to edit permissions to allow
Read access to contents of all public gated repos you can access
huggingface-cli login --token YOUR_HF_HUB_TOKEN
Converting Models from PyTorch to Core ML
Click to expand
Step 1: Follow the installation steps from the previous section
Step 2: Verify you've accepted the StabilityAI license terms and have allowed gated access on your HuggingFace token
Step 3: Prepare the denoise model (MMDiT) Core ML model files (.mlpackage
)
python -m python.src.diffusionkit.tests.torch2coreml.test_mmdit --sd3-ckpt-path stabilityai/stable-diffusion-3-medium --model-version 2b -o <output-mlpackages-directory> --latent-size {64, 128}
Step 4: Prepare the VAE Decoder Core ML model files (.mlpackage
)
python -m python.src.diffusionkit.tests.torch2coreml.test_vae --sd3-ckpt-path stabilityai/stable-diffusion-3-medium -o <output-mlpackages-directory> --latent-size {64, 128}
Note:
--sd3-ckpt-path
can be a path any HuggingFace repo (e.g.stabilityai/stable-diffusion-3-medium
) OR a path to a localsd3_medium.safetensors
file
Image Generation with Python MLX
Click to expand
CLI
Most simple:
diffusionkit-cli --prompt "a photo of a cat" --output-path </path/to/output/image.png>
Some notable optional arguments for:
- Reproduciblity of results, use
--seed
- image-to-image, use
--image-path
(path to input image) and--denoise
(value between 0. and 1.) - Enabling T5 encoder in SD3, use
--t5
(FLUX must use T5 regardless of this argument) - Different resolutions, use
--height
and--width
- Using a local checkpoint, use
--local-ckpt </path/to/ckpt.safetensors>
(e.g.~/models/stable-diffusion-3-medium/sd3_medium.safetensors
).
Please refer to the help menu for all available arguments: diffusionkit-cli -h
.
Note: When using FLUX.1-dev
, verify you've accepted the FLUX.1-dev licence and have allowed gated access on your HuggingFace token
Code
For Stable Diffusion 3:
from diffusionkit.mlx import DiffusionPipeline
pipeline = DiffusionPipeline(
shift=3.0,
use_t5=False,
model_version="argmaxinc/mlx-stable-diffusion-3-medium",
low_memory_mode=True,
a16=True,
w16=True,
)
For FLUX:
from diffusionkit.mlx import FluxPipeline
pipeline = FluxPipeline(
shift=1.0,
model_version="argmaxinc/mlx-FLUX.1-schnell", # model_version="argmaxinc/mlx-FLUX.1-dev" for FLUX.1-dev
low_memory_mode=True,
a16=True,
w16=True,
)
Finally, to generate the image, use the generate_image()
function:
HEIGHT = 512
WIDTH = 512
NUM_STEPS = 4 # 4 for FLUX.1-schnell, 50 for SD3 and FLUX.1-dev
CFG_WEIGHT = 0. # for FLUX.1-schnell, 5. for SD3
image, _ = pipeline.generate_image(
"a photo of a cat",
cfg_weight=CFG_WEIGHT,
num_steps=NUM_STEPS,
latent_size=(HEIGHT // 8, WIDTH // 8),
)
Some notable optional arguments:
- For image-to-image, use
image_path
(path to input image) anddenoise
(value between 0. and 1.) input variables. - For seed, use
seed
input variable. - For negative prompt, use
negative_text
input variable.
The generated image
can be saved with:
image.save("path/to/save.png")
Image Generation with Swift
Click to expand
Core ML Swift
Apple Core ML Stable Diffusion is the initial Core ML backend for DiffusionKit. Stable Diffusion 3 support is upstreamed to that repository while we build the holistic Swift inference package.
MLX Swift
🚧
License
DiffusionKit is released under the MIT License. See LICENSE for more details.
Citation
If you use DiffusionKit for something cool or just find it useful, please drop us a note at info@takeargmax.com!
If you use DiffusionKit for academic work, here is the BibTeX:
@misc{diffusionkit-argmax,
title = {DiffusionKit},
author = {Argmax, Inc.},
year = {2024},
URL = {https://github.com/argmaxinc/DiffusionKit}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file diffusionkit-0.5.1.tar.gz
.
File metadata
- Download URL: diffusionkit-0.5.1.tar.gz
- Upload date:
- Size: 45.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 67354eff621ae09acfdd9e3eb2c2d937385fab06b93b2261a60cd6247813ac03 |
|
MD5 | 7dc0f6725b993d433881eb88639faaea |
|
BLAKE2b-256 | b49615458a75e8fd5eb0e73dde2523f2bf91eaf297de746588844edd369a102b |
File details
Details for the file diffusionkit-0.5.1-py3-none-any.whl
.
File metadata
- Download URL: diffusionkit-0.5.1-py3-none-any.whl
- Upload date:
- Size: 53.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a84b6fc57e1170f6e7d97d2601884a2874e378c4987ef423fc0bc69665fa14b7 |
|
MD5 | bc8b406be4b0b54d80880ff3a3184398 |
|
BLAKE2b-256 | 7810feae98b71b5b6a157658af37e9d66ea5c0cfdea39eb0d1728f5d5eccfffa |