Skip to main content

DIGEN: Diverse Generative ML Benchmark

Project description

What is DIGEN?

Diverse and Generative ML benchmark (DIGEN) is a modern machine learning benchmark, which includes:

  • 40 datasets in tabular numeric format specially designed to differentiate the performance of some of the leading Machine Learning (ML) methods, and
  • a package to perform reproducible benchmarking that simplifies comparison of performance of the methods.

DIGEN provides comprehensive information on the datasets, including:

  • ground truth - a mathematical formula presenting how the endpoint was generated for each of the datasets
  • the results of exploratory analysis, which includes feature correlation and histogram showing how binary endpoint was calculated.
  • multiple statistics on the datasets, including the AUROC, AUPRC and F1 scores
  • each dataset comes with Reveiver-Operating Characteristics (ROC) and Precision-Recall (PRC) charts for tuned ML methods,
  • a boxplot with projected performance of the leading methods after hyper-parameter tuning (100 runs of each method started with different random seed)

Apart from providing a collection of datasets and tuned ML methods, DIGEN provides tools to easily tune and optimize parameters of any novel ML method, as well as visualize its performance in comparison with the leading ones. DIGEN also offers tools for reproducibility.

Dependencies

The following packages are required to use DIGEN:

pandas>=1.05
numpy>=1.19.5
optuna>=2.4.0
scikit-learn>=0.22.2
importlib_resources

Installing DIGEN

The best way to install DIGEN is using pip, e.g. as a user:

pip install -U digen

Using DIGEN

A non-peer reviewed paper is available at https://arxiv.org/pdf/2107.06475.pdf

Apart from the datasets, DIGEN provides a comprehensive toolbox for analyzing the performance of a chosen ML method. DIGEN uses Optuna, a state of the art framework for optimizing hyper-parameters

Please refer to our online documentation at https://epistasislab.github.io/digen

Citing DIGEN

If you found this resource to be helpful, please cite it the following way:

@article{orzechowski2021generative,
  title={Generative and reproducible benchmarks for comprehensive evaluation of machine learning classifiers},
  author={Orzechowski, Patryk and Moore, Jason H},
  journal={arXiv preprint arXiv:2107.06475},
  year={2021}
}

Tutorials

DIGEN Tutorial is a great place to start exploring our package. For advanced use, e.g. customization, manipulations with the charts, additional statistics on the collection, please check our Advanced Tutorial.

Included ML classifiers:

The following methods were included in our benchmark:

  • Decision Tree
  • Gradient Boosting
  • K-Nearest Neighbors
  • LightGBM
  • Logistic Regression
  • Random Forest
  • SVC
  • XGBoost

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

digen-0.0.4.tar.gz (181.8 kB view details)

Uploaded Source

Built Distribution

digen-0.0.4-py3-none-any.whl (191.6 kB view details)

Uploaded Python 3

File details

Details for the file digen-0.0.4.tar.gz.

File metadata

  • Download URL: digen-0.0.4.tar.gz
  • Upload date:
  • Size: 181.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for digen-0.0.4.tar.gz
Algorithm Hash digest
SHA256 ab3920a6fcc3113210969f3622cc889988c976fdb544e112358f9dd945797d60
MD5 fdbae720cfa893582f201a53d02785a9
BLAKE2b-256 b9a3216a9410534c0936bad5dab25439443db6f132ebb9522303fff97a25cdc1

See more details on using hashes here.

File details

Details for the file digen-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: digen-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 191.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for digen-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 49d7fa970cb2207d689e4806013e721ead041bc997451acd66fdf6337c251766
MD5 3ecf46a95095cbdc8c9ce6bf62220b34
BLAKE2b-256 8a4f0b6e2dca29a6783bd20e80f9a8a651493888330340d2d30bf16e6c046599

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page