Skip to main content

Digital Arz tools for applications

Project description

DigitalArz Tools

Tools for providing GIS capabilities in the DigitalArz Application. Tools are based on

  1. RasterIO
  2. GeoPandas
  3. Shapely
  4. Scikit-learn

Modules are

Raster

  1. rio_raster: to extract raster information and read and write operation using raster io
  2. rio_process: to perform different process on a raster
  3. rio_extraction : to extract data from different pipelines like GEE
  4. indices

Vector

  1. gpd_vector: to extract vector and perform operation using geopandas

Pipeline

To add the account in the digitalarztool module, you have to open the python console. Activate the venv environment and open python in this environment. In console use following commands

from digitalarztools.pipelines.config.server_settings import ServerSetting
ServerSetting().set_up_account("NASA")

Following piplines are available

  1. gee: pipeline with google earth engine for processing and extracting data

  2. srtm: pipeline to extract SRTM data from

  3. nasa: pipeline to extract NASA data. First need to setup account using

    SeverSetting.set_up_account("NASA")
    

    alos palsar: to extract alos palsar RTC data using earthsat api

  4. grace & gldas: to extract grace and gldas data using ggtools(https://pypi.org/project/ggtools/). Grace data is available at https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC-GRFO_MASCON_CRI_GRID_RL06_V2

  5. ClimateServ Date: https://pypi.org/project/climateserv/

  6. CHIRP: download Rainfall data.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

digitalarztools-0.1.48.1.tar.gz (231.9 kB view details)

Uploaded Source

Built Distribution

digitalarztools-0.1.48.1-py3-none-any.whl (357.1 kB view details)

Uploaded Python 3

File details

Details for the file digitalarztools-0.1.48.1.tar.gz.

File metadata

  • Download URL: digitalarztools-0.1.48.1.tar.gz
  • Upload date:
  • Size: 231.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.6

File hashes

Hashes for digitalarztools-0.1.48.1.tar.gz
Algorithm Hash digest
SHA256 71faa3d4ec1e49e8a7a81317ad01005ff79b76e1813690c025ab23098f734546
MD5 5b5c402fec5fd4782fbecfb9e59ffccb
BLAKE2b-256 92f2d5bfc12b28fa50acb6ce63ecd1e9773be941d676ec0f1ffe50d950c247f1

See more details on using hashes here.

File details

Details for the file digitalarztools-0.1.48.1-py3-none-any.whl.

File metadata

File hashes

Hashes for digitalarztools-0.1.48.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0943a9d7f7fa425b0087eb6e5eb9973dd1450f5ba17a9614dfcff24077604693
MD5 8a7c82c7faf9a6c4bd4de172af77a7a4
BLAKE2b-256 93e85d72dc0ac8cdad89209ba0bc0895dc772d53a4f66b6704cbf19d08816527

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page