An adapter for transfer DigitalTWIN Clinic Description to FHIR
Project description
Digitaltwins on FHIR
Usage
- Setup and connect to FHIR server
from digitaltwins_on_fhir.core import Adapter
adapter = Adapter("http://localhost:8080/fhir/")
Load data to FHIR server
Primary measurements
- Load FHIR bundle
await adapter.loader().load_fhir_bundle('./dataset/dataset-fhir-bundles')
- Load DigitalTWIN Clinical Description (primary measurements)
measurements = adapter.loader().load_sparc_dataset_primary_measurements()
with open('./dataset/measurements.json', 'r') as file:
data = json.load(file)
await measurements.add_measurements_description(data).generate_resources()
- Add Practitioner (researcher) to FHIR server
from digitaltwins_on_fhir.core.resource import Identifier, Code, HumanName, Practitioner
await measurements.add_practitioner(researcher=Practitioner(
active=True,
identifier=[
Identifier(use=Code("official"), system="sparc.org",
value='sparc-d557ac68-f365-0718-c945-8722ec')],
name=[HumanName(use="usual", text="Xiaoming Li", family="Li", given=["Xiaoming"])],
gender="male"
))
Workflow
Search
References in Task (workflow tool process) resource
- owner:
Patient
reference - for:
PlanDefinition
(workflow) reference - focus:
ActivityDefinition
(workflow tool) reference - basedOn:
ResearchSubject
reference - requester (Optional):
Practitioner
(researcher) reference - references in input
- ImagingStudy
- Observation
- references in output
- Observation
Example
- Find a specific workflow process
- If known: patient, dataset, workflow tool and workflow uuids
client = adapter.async_client
# Step 1: find the patient
patient = await client.resources("Patient").search(
identifier="patient-xxxx").first()
# Step 2: find the dataset
dataset = await client.resources("ResearchStudy").search(
identifier="dataset-xxxx").first()
# Step 3: find the workflow tool
workflow_tool = await client.resources("ActivityDefinition").search(
identifier="workflow-tool-xxxx").first()
# Step 4: find the research subject
research_subject = await client.resources("ResearchSubject").search(
patient=patient.to_reference().reference,
study=dataset.to_reference().reference).first()
# Step 5: find workflow
workflow = await client.resources("PlanDefinition").search(
identifier="sparc-workflow-uuid-001").first()
workflow_tool_process = await client.resources("Task").search(
subject=workflow.to_reference(),
focus=workflow_tool.to_reference(),
based_on=research_subject.to_reference(),
owner=patient.to_reference()).first()
- Find all input resources of the workflow tool process
inputs = workflow_tool_process.get("input")
for i in inputs:
input_reference = i.get("valueReference")
input_resource = await input_reference.to_resource()
- Find the input data comes from with dataset
- Assume we don't know the dataset and patient uuids at this stage
composition = await client.resources("Composition").search(
title="primary measurements",
entry=input_reference).first()
dataset = await composition.get("subject").to_resource()
- Find all output resources of the workflow tool process
outputs = workflow_tool_process.get("output")
for output in outputs:
output_reference = output.get("valueReference")
output_resource = await output_reference.to_resource()
References in PlanDefinition (workflow) resource
- action
- definition_canonical: ActivityDefinition (workflow tool) reference
Example
- If known workflow uuid
- Find all related workflow tools
workflow = await client.resources("PlanDefinition").search( identifier="sparc-workflow-uuid-001").first() actions = workflow.get("action") for a in actions: if a.get("definitionCanonical") is None: continue resource_type, _id = a.get("definitionCanonical").split("/") workflow_tool = await client.reference(resource_type, _id).to_resource()
- Find all related workflow processes
workflow_tool_processes = await client.resources("Task").search( subject=workflow.to_reference()).fetch_all()
- Find all related workflow tools
Reference in resource
Patient
- generalPractitioner: [ Practitioner reference ]
ResearchSubject
- individual: Patient reference
- study: ResearchStudy reference
- consent: Consent reference
ResearchStudy
- principalInvestigator: Practitioner reference
Composition
- primary measurements- author: [ Patient reference, Practitioner reference ]
- subject: ResearchStudy reference
- entry: [ Observation reference, ImagingStudy reference]
ImagingStudy
- subject: Patient reference
- endpoint: [ Endpoint Reference ]
- referrer: Practitioner reference
Observation
- primary measurements- subject: Patient reference
PlanDefinition
:- action.definitionCanonical: ActivityDefinition reference string
ActivityDefinition
:- participant: [ software uuid, model uuid]
Task
:- owner: patient reference
- for: workflow reference
- focus: workflow tool reference
- basedOn: research subject reference
- requester (Optional): practitioner reference
- input: [ Observation reference, ImagingStudy reference ]
- output: [ Observation reference, ImagingStudy reference ]
Composition
- workflow tool result- author: Patient reference
- subject: Task (workflow tool process) reference
- section:
- entry: Observations
- focus: ActivityDefinition (workflow tool) reference
Observation
- workflow tool result- focus: [ActivityDefinition reference]
DigitalTWIN on FHIR Diagram
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file digitaltwins_on_fhir-1.2.2.tar.gz
.
File metadata
- Download URL: digitaltwins_on_fhir-1.2.2.tar.gz
- Upload date:
- Size: 65.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1127becfc43194dc22697752eecfe6c37ded27f233382a90bb655a99a1f1cb5d |
|
MD5 | 48599ec96f70fa3c9f4cd39900b4371c |
|
BLAKE2b-256 | 5adc2327d2365e1c50bb643c183a80da39d3060de3d8c521c39956b1f9502c67 |
File details
Details for the file digitaltwins_on_fhir-1.2.2-py3-none-any.whl
.
File metadata
- Download URL: digitaltwins_on_fhir-1.2.2-py3-none-any.whl
- Upload date:
- Size: 83.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1aea71d030057036a0bddd9ebc8f56183043fec6aba461d8cf6562ff5a710edc |
|
MD5 | f3c5ba799c95568c4c98866e675cd623 |
|
BLAKE2b-256 | bb295cd61dc61182eb64ab813e4f5dfb3df05985b7ff12097a6dfc54726a4af5 |