Skip to main content

An adapter for transfer DigitalTWIN Clinic Description to FHIR

Project description

Digitaltwins on FHIR

Usage

  • Setup and connect to FHIR server
from digitaltwins_on_fhir.core import Adapter

adapter = Adapter("http://localhost:8080/fhir/")

Load data to FHIR server

Primary measurements

  • Load FHIR bundle
 await adapter.loader().load_fhir_bundle('./dataset/dataset-fhir-bundles')
  • Load DigitalTWIN Clinical Description (primary measurements)
measurements = adapter.loader().load_sparc_dataset_primary_measurements()
with open('./dataset/measurements.json', 'r') as file:
    data = json.load(file)

await measurements.add_measurements_description(data).generate_resources()
  • Add Practitioner (researcher) to FHIR server
from digitaltwins_on_fhir.core.resource import Identifier, Code, HumanName, Practitioner

await measurements.add_practitioner(researcher=Practitioner(
  active=True,
  identifier=[
    Identifier(use=Code("official"), system="sparc.org",
               value='sparc-d557ac68-f365-0718-c945-8722ec')],
  name=[HumanName(use="usual", text="Xiaoming Li", family="Li", given=["Xiaoming"])],
  gender="male"
))

Workflow

Search

References in Task (workflow tool process) resource

  • owner: Patient reference
  • for: PlanDefinition (workflow) reference
  • focus: ActivityDefinition (workflow tool) reference
  • basedOn: ResearchSubject reference
  • requester (Optional): Practitioner (researcher) reference
  • references in input
    • ImagingStudy
    • Observation
  • references in output
    • Observation
Example
  • Find a specific workflow process
    • If known: patient, dataset, workflow tool and workflow uuids
client = adapter.async_client

# Step 1: find the patient
patient = await client.resources("Patient").search(
                                    identifier="patient-xxxx").first()
# Step 2: find the dataset
dataset = await client.resources("ResearchStudy").search(
                                    identifier="dataset-xxxx").first()
# Step 3: find the workflow tool
workflow_tool = await client.resources("ActivityDefinition").search(
                                    identifier="workflow-tool-xxxx").first()
# Step 4: find the research subject
research_subject = await client.resources("ResearchSubject").search(
                                    patient=patient.to_reference().reference,
                                    study=dataset.to_reference().reference).first()
# Step 5: find workflow
workflow = await client.resources("PlanDefinition").search(
                                    identifier="sparc-workflow-uuid-001").first()
workflow_tool_process = await client.resources("Task").search(
                                    subject=workflow.to_reference(),
                                    focus=workflow_tool.to_reference(),
                                    based_on=research_subject.to_reference(),
                                    owner=patient.to_reference()).first()
  • Find all input resources of the workflow tool process
inputs = workflow_tool_process.get("input")
for i in inputs:
    input_reference = i.get("valueReference")
    input_resource = await input_reference.to_resource()
  • Find the input data comes from with dataset
    • Assume we don't know the dataset and patient uuids at this stage
composition = await client.resources("Composition").search(
                                    title="primary measurements", 
                                    entry=input_reference).first()
dataset = await composition.get("subject").to_resource()
  • Find all output resources of the workflow tool process
outputs = workflow_tool_process.get("output")
for output in outputs:
    output_reference = output.get("valueReference")
    output_resource = await output_reference.to_resource()

References in PlanDefinition (workflow) resource

  • action
    • definition_canonical: ActivityDefinition (workflow tool) reference
Example
  • If known workflow uuid
    • Find all related workflow tools
      workflow = await client.resources("PlanDefinition").search(
                                          identifier="sparc-workflow-uuid-001").first()
      actions = workflow.get("action")
      
      for a in actions:
          if a.get("definitionCanonical") is None:
              continue
          resource_type, _id = a.get("definitionCanonical").split("/")
          workflow_tool = await client.reference(resource_type, _id).to_resource()
      
    • Find all related workflow processes
      workflow_tool_processes = await client.resources("Task").search(
                                          subject=workflow.to_reference()).fetch_all()
      

Reference in resource

  • Patient
    • generalPractitioner: [ Practitioner reference ]
  • ResearchSubject
    • individual: Patient reference
    • study: ResearchStudy reference
    • consent: Consent reference
  • ResearchStudy
    • principalInvestigator: Practitioner reference
  • Composition - primary measurements
    • author: [ Patient reference, Practitioner reference ]
    • subject: ResearchStudy reference
    • entry: [ Observation reference, ImagingStudy reference]
  • ImagingStudy
    • subject: Patient reference
    • endpoint: [ Endpoint Reference ]
    • referrer: Practitioner reference
  • Observation - primary measurements
    • subject: Patient reference
  • PlanDefinition:
    • action.definitionCanonical: ActivityDefinition reference string
  • ActivityDefinition:
    • participant: [ software uuid, model uuid]
  • Task:
    • owner: patient reference
    • for: workflow reference
    • focus: workflow tool reference
    • basedOn: research subject reference
    • requester (Optional): practitioner reference
    • input: [ Observation reference, ImagingStudy reference ]
    • output: [ Observation reference, ImagingStudy reference ]
  • Composition - workflow tool result
    • author: Patient reference
    • subject: Task (workflow tool process) reference
    • section:
      • entry: Observations
      • focus: ActivityDefinition (workflow tool) reference
  • Observation - workflow tool result
    • focus: [ActivityDefinition reference]

DigitalTWIN on FHIR Diagram

DigitalTWIN on FHIR

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

digitaltwins_on_fhir-1.2.2.tar.gz (65.7 kB view details)

Uploaded Source

Built Distribution

digitaltwins_on_fhir-1.2.2-py3-none-any.whl (83.4 kB view details)

Uploaded Python 3

File details

Details for the file digitaltwins_on_fhir-1.2.2.tar.gz.

File metadata

  • Download URL: digitaltwins_on_fhir-1.2.2.tar.gz
  • Upload date:
  • Size: 65.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for digitaltwins_on_fhir-1.2.2.tar.gz
Algorithm Hash digest
SHA256 1127becfc43194dc22697752eecfe6c37ded27f233382a90bb655a99a1f1cb5d
MD5 48599ec96f70fa3c9f4cd39900b4371c
BLAKE2b-256 5adc2327d2365e1c50bb643c183a80da39d3060de3d8c521c39956b1f9502c67

See more details on using hashes here.

File details

Details for the file digitaltwins_on_fhir-1.2.2-py3-none-any.whl.

File metadata

File hashes

Hashes for digitaltwins_on_fhir-1.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 1aea71d030057036a0bddd9ebc8f56183043fec6aba461d8cf6562ff5a710edc
MD5 f3c5ba799c95568c4c98866e675cd623
BLAKE2b-256 bb295cd61dc61182eb64ab813e4f5dfb3df05985b7ff12097a6dfc54726a4af5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page