Skip to main content

Differentiable (binned) likelihoods in JAX.

Project description

dilax

Documentation Status Actions Status PyPI version PyPI platforms

Differentiable (binned) likelihoods in JAX.

Installation

python -m pip install dilax

From source:

git clone https://github.com/pfackeldey/dilax
cd dilax
python -m pip install .

Usage - Model definition and fitting

See more in examples/

dilax in a nutshell:

import jax
import jax.numpy as jnp
import equinox as eqx

from dilax.likelihood import NLL
from dilax.model import Model, Result
from dilax.optimizer import JaxOptimizer
from dilax.parameter import Parameter, gauss, modifier, unconstrained
from dilax.util import HistDB


jax.config.update("jax_enable_x64", True)


# define a simple model with two processes and two parameters
class MyModel(Model):
    def __call__(self, processes: HistDB, parameters: dict[str, Parameter]) -> Result:
        res = Result()

        # signal
        mu_mod = modifier(name="mu", parameter=parameters["mu"], effect=unconstrained())
        res.add(process="signal", expectation=mu_mod(processes["signal"]))

        # background
        bkg_mod = modifier(name="sigma", parameter=parameters["sigma"], effect=gauss(0.2))
        res.add(process="background", expectation=bkg_mod(processes["background"]))
        return res


# setup model
processes = HistDB({"signal": jnp.array([10.0]), "background": jnp.array([50.0])})
parameters = {
    "mu": Parameter(value=jnp.array([1.0]), bounds=(0.0, jnp.inf)),
    "sigma": Parameter(value=jnp.array([0.0])),
}
model = MyModel(processes=processes, parameters=parameters)

# define negative log-likelihood with data (observation)
nll = NLL(model=model, observation=jnp.array([64.0]))
# jit it!
fast_nll = eqx.filter_jit(nll)

# setup fit: initial values of parameters and a suitable optimizer
init_values = model.parameter_values
optimizer = JaxOptimizer.make(name="ScipyMinimize", settings={"method": "trust-constr"})

# fit
values, state = optimizer.fit(fun=fast_nll, init_values=init_values)

print(values)
# -> {'mu': Array([1.4], dtype=float64),
#     'sigma': Array([4.04723836e-14], dtype=float64)}

# eval model with fitted values/parameters
print(model.update(values=values).evaluate().expectation())
# -> Array([64.], dtype=float64)


# gradients of "prefit" model:
fast_grad_nll_prefit = eqx.filter_grad(nll)
print(fast_grad_nll_prefit({"sigma": jnp.array([0.2])}))
# -> {'sigma': Array([-0.12258065], dtype=float64)}

# gradients of "postfit" model:
postfit_nll = NLL(model=model.update(values=values), observation=jnp.array([64.0]))
fast_grad_nll_postfit = eqx.filter_grad(eqx.filter_jit(postfit_nll))
print(fast_grad_nll_postfit({"sigma": jnp.array([0.2])}))
# -> {'sigma': Array([0.5030303], dtype=float64)}

Contributing

See CONTRIBUTING.md for instructions on how to contribute.

License

Distributed under the terms of the BSD license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dilax-0.1.2.tar.gz (21.8 kB view details)

Uploaded Source

Built Distribution

dilax-0.1.2-py3-none-any.whl (15.2 kB view details)

Uploaded Python 3

File details

Details for the file dilax-0.1.2.tar.gz.

File metadata

  • Download URL: dilax-0.1.2.tar.gz
  • Upload date:
  • Size: 21.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for dilax-0.1.2.tar.gz
Algorithm Hash digest
SHA256 4f3d3143ad41dfdce2b2bba87bcfdf5c5425b564474786f05f7aa156920bb430
MD5 4a627552fddb341ccd8ad794e52c1839
BLAKE2b-256 ddce8cab72330e18a96aecfc7c3fcd4e4a632c337dbf1eeeb06b724535f0c888

See more details on using hashes here.

File details

Details for the file dilax-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: dilax-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 15.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for dilax-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 849b27643f25813dc31a7250afa517b4e1f7536b58bba40667d9df95e0756bee
MD5 0639510fb1c8ca10966bc5c92584f9fe
BLAKE2b-256 91925f5813396f5a2e09a030d2e3ecd5278f83ef0ec8c86e93515b9e24572267

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page