CRYSTALS-Dilithium for eShard
Project description
# CRYSTALS-Dilithium Python Implementation
This repository contains a pure python implementation of CRYSTALS-Dilithium following (at the time of writing) the most recent [specification](https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf) (v3.1)
This project has followed [kyber-py](https://github.com/jack4818/kyber-py) which is a pure-python implementation of CRYSTALS-Kyber and reuses a lot of code.
## Disclaimer
- warning:
Under no circumstances should this be used for a cryptographic application. :warning:
I have written dilithium-py as a way to learn about the way protocol works, and to try and create a clean, well commented implementation which people can learn from.
This code is not constant time, or written to be performant. Rather, it was written so that reading though the pseudocode of the [specification](https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf) closely matches the code which we use within dilithium.py and supporting files.
### KATs
This implementation passes all the KAT vectors, generated from the reference implementation version 3.1.
These tests, as well as other internal unit tests are the file [test_dilithium.py](test_dilithium.py).
### Generating KAT files
This implementation is based off the most recent specification (v3.1). There were [breaking changes](https://github.com/pq-crystals/dilithium/commit/e989e691ae3d3f5933d012ab074bdc413ebc6fad) to the KAT files submitted to NIST when Dilithium was updated to 3.1, so the NIST KAT files will not match our code.
To deal with this, we generated our own KAT files from the [reference implementation](https://github.com/pq-crystals/dilithium/releases/tag/v3.1) for version 3.1. These are the files inside [assets](assets/).
### Dependencies
Originally, as with kyber-py, this project was planned to have zero dependencies, however like kyber-py, to pass the KATs, I need a deterministic CSRNG. The reference implementation uses AES256 CTR DRBG. I have implemented this in [ase256_ctr_drbg.py](ase256_ctr_drbg.py). However, I have not implemented AES itself, instead I import this from pycryptodome.
To install dependencies, run pip -r install requirements.
If you’re happy to use system randomness (os.urandom) then you don’t need this dependency.
## Using dilithium-py
There are three functions exposed on the Dilithium class which are intended for use:
Dilithium.keygen(): generate a bit-packed keypair (pk, sk)
Dilithium.sign(sk, msg): generate a bit-packed signature sig from the message msg and bit-packed secret key sk.
Dilithium.verify(pk, msg, sig): verify that the bit-packed sig is valid for a given message msg and bit-packed public key pk.
To use Dilithium(), it must be initialised with a dictionary of the protocol parameters. An example can be seen in DEFAULT_PARAMETERS in the file [dilithium.py](dilithium.py)
Additionally, the class has been initialised with these default parameters, so you can simply import the NIST level you want to play with:
#### Example
`python >>> from dilithium import Dilithium2 >>> >>> # Example of signing >>> pk, sk = Dilithium2.keygen() >>> msg = b"Your message signed by Dilithium" >>> sig = Dilithium2.sign(sk, msg) >>> assert Dilithium2.verify(pk, msg, sig) >>> >>> # Verification will fail with the wrong msg or pk >>> assert not Dilithium2.verify(pk, b"", sig) >>> pk_new, sk_new = Dilithium2.keygen() >>> assert not Dilithium2.verify(pk_new, msg, sig) `
The above example would also work with the other NIST levels Dilithium3 and Dilithium5.
## Future Plans
First plan: Add documentation to the code
Add examples for each of the functions
Add documentation on how each of the components works
Add documentation for working with DRBG and setting the seed
## Discussion of Implementation
### Polynomials
The file [polynomials.py](polynomials.py) contains the classes PolynomialRing and Polynomial. This implements the univariate polynomial ring
$$ R_q = mathbb{F}_q[X] /(X^n + 1) $$
The implementation is inspired by SageMath and you can create the ring $R_{11} = mathbb{F}_{11}[X] /(X^8 + 1)$ in the following way:
#### Example
`python >>> R = PolynomialRing(11, 8) >>> x = R.gen() >>> f = 3*x**3 + 4*x**7 >>> g = R.random_element(); g 5 + x^2 + 5*x^3 + 4*x^4 + x^5 + 3*x^6 + 8*x^7 >>> f*g 8 + 9*x + 10*x^3 + 7*x^4 + 2*x^5 + 5*x^6 + 10*x^7 >>> f + f 6*x^3 + 8*x^7 >>> g - g 0 `
### Modules
The file [modules.py](modules.py) contains the classes Module and Matrix. A module is a generalisation of a vector space, where the field of scalars is replaced with a ring. In the case of Dilithium, we need the module with the ring $R_q$ as described above.
Matrix allows elements of the module to be of size $m times n$ For Dilithium, we need vectors of length $k$ and $l$ and a matrix of size $l times k$.
As an example of the operations we can perform with out Module lets revisit the ring from the previous example:
#### Example
`python >>> R = PolynomialRing(11, 8) >>> x = R.gen() >>> >>> M = Module(R) >>> # We create a matrix by feeding the coefficients to M >>> A = M([[x + 3*x**2, 4 + 3*x**7], [3*x**3 + 9*x**7, x**4]]) >>> A [ x + 3*x^2, 4 + 3*x^7] [3*x^3 + 9*x^7, x^4] >>> # We can add and subtract matricies of the same size >>> A + A [ 2*x + 6*x^2, 8 + 6*x^7] [6*x^3 + 7*x^7, 2*x^4] >>> A - A [0, 0] [0, 0] >>> # A vector can be constructed by a list of coefficents >>> v = M([3*x**5, x]) >>> v [3*x^5, x] >>> # We can compute the transpose >>> v.transpose() [3*x^5] [ x] >>> v + v [6*x^5, 2*x] >>> # We can also compute the transpose in place >>> v.transpose_self() [3*x^5] [ x] >>> v + v [6*x^5] [ 2*x] >>> # Matrix multiplication follows python standards and is denoted by @ >>> A @ v [8 + 4*x + 3*x^6 + 9*x^7] [ 2 + 6*x^4 + x^5] `
### Number Theoretic Transform
TODO: More details about the NTT.
We can transform polynomials to NTT form and from NTT form with poly.to_ntt() and poly.from_ntt().
When we perform operations between polynomials, (+, -, *) either both or neither must be in NTT form.
`py >>> f = R.random_element() >>> f == f.to_ntt().from_ntt() True >>> g = R.random_element() >>> h = f*g >>> h == (f.to_ntt() * g.to_ntt()).from_ntt() True `
While writing this README, performing multiplication of of polynomials in NTT form is about 100x faster when working with the ring used by Dilithium.
`py >>> # Lets work in the ring we use for Dilithium >>> R = Dilithium2.R >>> # Generate some random elements >>> f = R.random_element() >>> g = R.random_element() >>> # Takes about 10 seconds to perform 1000 multiplications >>> timeit.timeit("f*g", globals=globals(), number=1000) 9.621509193995735 >>> # Now lets convert to NTT and try again >>> f.to_ntt() >>> g.to_ntt() >>> # Now it only takes ~0.1s to perform 1000 multiplications! >>> timeit.timeit("f*g", globals=globals(), number=1000) 0.12979038299818058 `
These functions extend to modules
`py >>> M = Dilithium2.M >>> R = Dilithium2.R >>> v = M([R.random_element(), R.random_element()]) >>> u = M([R.random_element(), R.random_element()]).transpose() >>> A = u @ v >>> A == (u.to_ntt() @ v.to_ntt()).from_ntt() True `
As operations on the module are just operations between elements, we expect a similar 100x speed up when working in NTT form:
`py >>> u = M([R.random_element(), R.random_element()]).transpose() >>> v = M([R.random_element(), R.random_element()]) >>> timeit.timeit("u@v", globals=globals(), number=1000) 38.39359304799291 >>> u = u.to_ntt() >>> v = v.to_ntt() >>> timeit.timeit("u@v", globals=globals(), number=1000) 0.495470915993792 `
### Bit Packing
` TODO `
### Random Sampling
` TODO `
### AES256-CTR-DRBG
` TODO `
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file dilithium-1.0.6.tar.gz
.
File metadata
- Download URL: dilithium-1.0.6.tar.gz
- Upload date:
- Size: 26.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3d97858ef502b88337006a5363f8fa3e2f55ae958f6051015a096d9ea5ad39ea |
|
MD5 | 2c0a58c372fd89309c757ecc5184500e |
|
BLAKE2b-256 | f97124a9985c9cc1be1bee498d0bb868c7686aa315033c2545ecf10964f65e33 |
File details
Details for the file dilithium-1.0.6-py3-none-any.whl
.
File metadata
- Download URL: dilithium-1.0.6-py3-none-any.whl
- Upload date:
- Size: 26.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2f9efd0e4f5a0ddc4b9ef71aca60bd0a0f9de57c9b5bcac5cf89592f7b4e0f14 |
|
MD5 | f0f1cee31fe8844ac673f639351a8133 |
|
BLAKE2b-256 | cb4e0c9a3c52bb3ddee599aaa8b575a125d8b406031361b6cf840885cfb7951c |