Package with the PCA, SVD and t-SNE methods for dimensionality reduction. It also contains the clustering algorithms K-Means and K-Medoids.
Project description
What is it?
dimensionality_reductions_jmsv is a Python package that provides three methods (PCA, SVD, t-SNE) to apply dimensionality reduction to any dataset. Aslo provides two methods (KMeans y KMedoids) to clustering.
Installing the package
-
Requests is available on PyPI:
pip install dimensionality_reductions_jmsv
-
Try your first dimensionality reduction with PCA
from dimensionality_reductions_jmsv.decomposition import PCA import numpy as np X = (np.random.rand(10, 10) * 10).astype(int) pca = PCA(n_components=2) X_pca = pca.fit_transform(X) print("Original Matrix:", '\n', X, '\n') print("Apply dimensionality reduction with PCA to Original Matrix:", '\n', X_pca)
-
Try your first KMeans cluster
from dimensionality_reductions_jmsv.cluster import KMeans from sklearn.datasets import make_blobs import matplotlib.pyplot as plt X, y = make_blobs(n_samples=500, n_features=2, centers=4, cluster_std=1, center_box=(-10.0, 10.0), shuffle=True, random_state=1, ) k = KMeans(n_clusters=4, init_method='kmeans++', random_state=32, n_init=10) m = k.fit_transform(X) plt.scatter(X[:, 0], X[:, 1], c=k._assign_clusters(X)) plt.title('Cluster KMeans') plt.show();
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for dimensionality_reductions_jmsv-0.2.0.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | dfdb0fbba0a2411653200ffe8582d58698b1abf46c5ba22fac1b3c4bd67686ab |
|
MD5 | c8a4aab16c9d0dff101429aeb1444977 |
|
BLAKE2b-256 | 6028b24f6224f94c7ccc74080dbe36b7b93276487cd383acb270f8b4423a398b |
Close
Hashes for dimensionality_reductions_jmsv-0.2.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1881843274d45cc96cb29944603160f7aa7accc3aa7cdfa3b962bde1b7e7be22 |
|
MD5 | 7109c6f0d2aff8b1493603edb60f7ffe |
|
BLAKE2b-256 | e74c78e6aa7074655256fdbbf53d6e8fa1c89fd4c9c1f3f39d1c6268f338dab2 |