Skip to main content

Package with the PCA, SVD and t-SNE methods for dimensionality reduction. It also contains the clustering algorithms K-Means and K-Medoids.

Project description

PyPI Version Package Status Python Versions License

What is it?

dimensionality_reductions_jmsv is a Python package that provides three methods (PCA, SVD, t-SNE) to apply dimensionality reduction to any dataset. Aslo provides two methods (KMeans y KMedoids) to clustering.

Installing the package

  1. Requests is available on PyPI:

    pip install dimensionality_reductions_jmsv
    
  2. Try your first dimensionality reduction with PCA

    from dimensionality_reductions_jmsv.decomposition import PCA
    import numpy as np
    
    X = (np.random.rand(10, 10) * 10).astype(int)
    pca = PCA(n_components=2)
    X_pca = pca.fit_transform(X)
    print("Original Matrix:", '\n', X, '\n')
    print("Apply dimensionality reduction with PCA to Original Matrix:", '\n', X_pca)
    
  3. Try your first KMeans cluster

    from dimensionality_reductions_jmsv.cluster import KMeans
    from sklearn.datasets import make_blobs
    import matplotlib.pyplot as plt
    
    X, y = make_blobs(n_samples=500, n_features=2, centers=4, cluster_std=1, center_box=(-10.0, 10.0), shuffle=True,
                      random_state=1, )
    k = KMeans(n_clusters=4, init_method='kmeans++', random_state=32, n_init=10)
    m = k.fit_transform(X)
    
    plt.scatter(X[:, 0], X[:, 1], c=k._assign_clusters(X))
    plt.title('Cluster KMeans')
    plt.show();
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dimensionality_reductions_jmsv-0.2.0.tar.gz (6.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file dimensionality_reductions_jmsv-0.2.0.tar.gz.

File metadata

File hashes

Hashes for dimensionality_reductions_jmsv-0.2.0.tar.gz
Algorithm Hash digest
SHA256 dfdb0fbba0a2411653200ffe8582d58698b1abf46c5ba22fac1b3c4bd67686ab
MD5 c8a4aab16c9d0dff101429aeb1444977
BLAKE2b-256 6028b24f6224f94c7ccc74080dbe36b7b93276487cd383acb270f8b4423a398b

See more details on using hashes here.

File details

Details for the file dimensionality_reductions_jmsv-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for dimensionality_reductions_jmsv-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1881843274d45cc96cb29944603160f7aa7accc3aa7cdfa3b962bde1b7e7be22
MD5 7109c6f0d2aff8b1493603edb60f7ffe
BLAKE2b-256 e74c78e6aa7074655256fdbbf53d6e8fa1c89fd4c9c1f3f39d1c6268f338dab2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page