Skip to main content

A feature selection and extraction library

Project description

DimSense: Feature Selection and Extraction Library

DimSense is a Python library designed to streamline the process of feature selection and extraction in machine learning projects. Whether you're working with large datasets or aiming to enhance model performance, DimSense offers a collection of methods to help you identify crucial features and reduce dimensionality effectively.

Installation

You can install DimSense using pip:

pip install dimsense

Usage

DimSense provides a range of feature selection and extraction methods that can be seamlessly integrated into your machine learning pipelines. Here's a basic example demonstrating how to use DimSense's feature selection:

from dimsense import FeatureSelector

# Load your dataset
X, y = load_dataset()

# Initialize the FeatureSelector
selector = FeatureSelector(method='select_k_best', num_features=10)

# Fit and transform the data
X_selected = selector.fit_transform(X, y)

For more detailed examples, function explanations, and advanced usage scenarios, refer to our documentation.

Contributing

We welcome contributions from the community! If you'd like to contribute to DimSense, please refer to our Contributing Guidelines.

Testing

We take testing seriously to ensure the reliability of DimSense. You can run the test suite using the following steps:

  1. Clone the repository:

    git clone https://github.com/Tinny-Robot/DimSense
    
  2. Navigate to the project directory:

    cd DimSense
    
  3. Install the required dependencies:

    pip install -r requirements.txt
    
  4. Run the tests:

    python run_tests.py
    

If all tests pass, you'll see output indicating the success. If any tests fail, carefully review the error messages and traceback to identify the issue. Feel free to reach out to us if you encounter any problems!

Continuous Integration

We also have set up continuous integration (CI) to automatically run tests whenever changes are pushed to the repository. You can view the test results and coverage reports directly in the pull request checks or on our CI provider's website.

Test Coverage

We aim for good test coverage to ensure the robustness of our code. If you're interested in measuring the test coverage, you can do so by running:

coverage run run_tests.py
coverage report -m

Happy testing with DimSense!

Changelog

For a complete list of changes and versions, please refer to the Changelog.

License

DimSense is released under the MIT License.

Contact

If you have any questions or feedback, feel free to reach out to us at handanfoun@gmail.com.

Happy feature engineering with DimSense!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dimsense-0.1.2.tar.gz (7.2 kB view details)

Uploaded Source

Built Distribution

dimsense-0.1.2-py3-none-any.whl (7.3 kB view details)

Uploaded Python 3

File details

Details for the file dimsense-0.1.2.tar.gz.

File metadata

  • Download URL: dimsense-0.1.2.tar.gz
  • Upload date:
  • Size: 7.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for dimsense-0.1.2.tar.gz
Algorithm Hash digest
SHA256 25569af74549d25ccb6c22ac529f1c44a8ed0aa3c235882aa8b85fb8e956ea22
MD5 4e6896ab6475e7e3ca58e59b59dea42d
BLAKE2b-256 002543cfcb986ba175aaa38a4bf1f9f93c105670354614d118cff19020f29946

See more details on using hashes here.

File details

Details for the file dimsense-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: dimsense-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 7.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for dimsense-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 a1abfd2131908856a6cae10d66adfffff2ec060e2f9ee242f22d1ef46dd64d7f
MD5 5d64397a691559ab2eb6f9e4684026d3
BLAKE2b-256 64104733d3ebf60da24b7710d33ccb8c6b2ea2b73613b44ffdd8e575772504b3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page