A feature selection and extraction library
Project description
DimSense: Feature Selection and Extraction Library
DimSense is a Python library designed to streamline the process of feature selection and extraction in machine learning projects. Whether you're working with large datasets or aiming to enhance model performance, DimSense offers a collection of methods to help you identify crucial features and reduce dimensionality effectively.
Installation
You can install DimSense using pip:
pip install dimsense
Usage
DimSense provides a range of feature selection and extraction methods that can be seamlessly integrated into your machine learning pipelines. Here's a basic example demonstrating how to use DimSense's feature selection:
from dimsense import FeatureSelector
# Load your dataset
X, y = load_dataset()
# Initialize the FeatureSelector
selector = FeatureSelector(method='select_k_best', num_features=10)
# Fit and transform the data
X_selected = selector.fit_transform(X, y)
For more detailed examples, function explanations, and advanced usage scenarios, refer to our documentation.
Contributing
We welcome contributions from the community! If you'd like to contribute to DimSense, please refer to our Contributing Guidelines.
Testing
We take testing seriously to ensure the reliability of DimSense. You can run the test suite using the following steps:
-
Clone the repository:
git clone https://github.com/Tinny-Robot/DimSense
-
Navigate to the project directory:
cd DimSense
-
Install the required dependencies:
pip install -r requirements.txt
-
Run the tests:
python run_tests.py
If all tests pass, you'll see output indicating the success. If any tests fail, carefully review the error messages and traceback to identify the issue. Feel free to reach out to us if you encounter any problems!
Continuous Integration
We also have set up continuous integration (CI) to automatically run tests whenever changes are pushed to the repository. You can view the test results and coverage reports directly in the pull request checks or on our CI provider's website.
Test Coverage
We aim for good test coverage to ensure the robustness of our code. If you're interested in measuring the test coverage, you can do so by running:
coverage run run_tests.py
coverage report -m
Happy testing with DimSense!
Changelog
For a complete list of changes and versions, please refer to the Changelog.
License
DimSense is released under the MIT License.
Contact
If you have any questions or feedback, feel free to reach out to us at handanfoun@gmail.com.
Happy feature engineering with DimSense!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file dimsense-0.1.2.tar.gz
.
File metadata
- Download URL: dimsense-0.1.2.tar.gz
- Upload date:
- Size: 7.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 25569af74549d25ccb6c22ac529f1c44a8ed0aa3c235882aa8b85fb8e956ea22 |
|
MD5 | 4e6896ab6475e7e3ca58e59b59dea42d |
|
BLAKE2b-256 | 002543cfcb986ba175aaa38a4bf1f9f93c105670354614d118cff19020f29946 |
File details
Details for the file dimsense-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: dimsense-0.1.2-py3-none-any.whl
- Upload date:
- Size: 7.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a1abfd2131908856a6cae10d66adfffff2ec060e2f9ee242f22d1ef46dd64d7f |
|
MD5 | 5d64397a691559ab2eb6f9e4684026d3 |
|
BLAKE2b-256 | 64104733d3ebf60da24b7710d33ccb8c6b2ea2b73613b44ffdd8e575772504b3 |