Skip to main content

DINCAE (Data-Interpolating Convolutional Auto-Encoder) is a neural network to reconstruct missing data in satellite observations

Project description

documentation latest DOI Build Status codecov.io

DINCAE

DINCAE (Data-Interpolating Convolutional Auto-Encoder) is a neural network to reconstruct missing data in satellite observations. https://www.geosci-model-dev-discuss.net/gmd-2019-128/

Installation

Python 3.6 with the modules:

Tested versions:

  • Python 3.6.8
  • netcdf4 1.4.2
  • numpy 1.15.4
  • Tensorflow version 1.15

You can install those packages either with pip3 or with conda.

Input format

The input data should be in netCDF with the variables:

  • lon: longitude (degrees East)
  • lat: latitude (degrees North)
  • time: time (days since 1900-01-01 00:00:00)
  • mask: boolean mask where true means the data location is valid
  • SST (or any other varbiable name): the data
netcdf avhrr_sub_add_clouds {
dimensions:
	time = UNLIMITED ; // (5266 currently)
	lat = 112 ;
	lon = 112 ;
variables:
	double lon(lon) ;
	double lat(lat) ;
	double time(time) ;
		time:units = "days since 1900-01-01 00:00:00" ;
	int mask(lat, lon) ;
	float SST(time, lat, lon) ;
		SST:_FillValue = -9999.f ;
}

Running DINCAE

Copy the template file run_DINCAE.py and adapt the filename, variable name and the output directory and possibly optional arguments for the reconstruction method as mentioned in the documentation. The code can be run as follows:

export PYTHONPATH=/path/to/module
python3 run_DINCAE.py

/path/to/module should be replaced by the directory name containing the file DINCAE.py.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

DINCAE-1.1.0.tar.gz (12.2 kB view details)

Uploaded Source

Built Distribution

DINCAE-1.1.0-py3-none-any.whl (22.1 kB view details)

Uploaded Python 3

File details

Details for the file DINCAE-1.1.0.tar.gz.

File metadata

  • Download URL: DINCAE-1.1.0.tar.gz
  • Upload date:
  • Size: 12.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.3.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.9

File hashes

Hashes for DINCAE-1.1.0.tar.gz
Algorithm Hash digest
SHA256 9a6e6c9fea1c3a4dc1c74d719a756910cac870799d193e26a577827b21cc75cd
MD5 f3e457c157fc957cdd0571b31dbaf428
BLAKE2b-256 901e1ff7250bc16748ced2dbe8e29d51888ec5b83c3451d2c77da77da52ccd10

See more details on using hashes here.

File details

Details for the file DINCAE-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: DINCAE-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 22.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.3.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.9

File hashes

Hashes for DINCAE-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 08bbfe79e713aeb17a56b4a1571d661464b9d743413c7e002a80015fc2a82e5a
MD5 c0bdb0246178f9bdeb94a13a2889ff6e
BLAKE2b-256 9b265fa623a73c107111677e18075dd394c566c7e8287451c15ca9b702cfbe80

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page