Skip to main content

Deep inference for gravitational-wave observations

Project description

Dingo

Dingo (Deep Inference for Gravitational-wave Observations) is a Python program for analyzing gravitational wave data using neural posterior estimation. It dramatically speeds up inference of astrophysical source parameters from data measured at gravitational-wave observatories. Dingo aims to enable the routine use of the most advanced theoretical models in analyzing data, to make rapid predictions for multi-messenger counterparts, and to do so in the context of sensitive detectors with high event rates.

The basic approach of Dingo is to train a neural network to represent the Bayesian posterior conditioned on data. This enables amortized inference: when new data are observed, they can be plugged in and results obtained in a small amount of time. Tasks handled by Dingo include

  • building training datasets;
  • training normalizing flows to estimate the posterior density;
  • performing inference on real or simulated data; and
  • verifying and correcting model results using importance sampling.

Installation

Pip

To install using pip, run the following within a suitable virtual environment:

pip install dingo-gw

This will install Dingo as well as all of its requirements, which are listed in pyproject.toml.

Conda

Dingo is also available from the conda-forge repository. To install using conda, first activate a conda environment, and then run

conda install -c conda-forge dingo-gw

Development install

If you would like to make changes to Dingo, or to contribute to its development, you should install Dingo from source. To do so, first clone this repository:

git clone git@github.com:dingo-gw/dingo.git

Next create a virtual environment for Dingo, e.g.,

python3 -m venv dingo-venv
source dingo-venv/bin/activate

This creates and activates a venv for Dingo called dingo-venv. In this virtual environment, install Dingo:

cd dingo
pip install -e ."[dev]"

This command installs an editable version of Dingo, meaning that any changes to the Dingo source are reflected immediately in the installation. The inclusion of dev installs extra packages needed for development (code formatting, compiling documentation, etc.)

Usage

For instructions on using Dingo, please refer to the documentation.

References

Dingo is based on the following series of papers:

  1. https://arxiv.org/abs/2002.07656: 5D toy model
  2. https://arxiv.org/abs/2008.03312: 15D binary black hole inference
  3. https://arxiv.org/abs/2106.12594: Amortized inference and group-equivariant neural posterior estimation
  4. https://arxiv.org/abs/2111.13139: Group-equivariant neural posterior estimation
  5. https://arxiv.org/abs/2210.05686: Importance sampling
  6. https://arxiv.org/abs/2211.08801: Noise forecasting

If you use Dingo in your work, we ask that you please cite at least https://arxiv.org/abs/2106.12594.

Contributors to the code are listed in AUTHORS.md. We thank Vivien Raymond and Rory Smith for acting as LIGO-Virgo-KAGRA (LVK) review chairs. Dingo makes use of many LVK software tools, including Bilby, bilby_pipe, and LALSimulation, as well as third party tools such as PyTorch and nflows.

Contact

For questions or comments please contact Maximilian Dax or Stephen Green.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dingo_gw-0.6.2.tar.gz (549.6 kB view details)

Uploaded Source

Built Distribution

dingo_gw-0.6.2-py3-none-any.whl (217.3 kB view details)

Uploaded Python 3

File details

Details for the file dingo_gw-0.6.2.tar.gz.

File metadata

  • Download URL: dingo_gw-0.6.2.tar.gz
  • Upload date:
  • Size: 549.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for dingo_gw-0.6.2.tar.gz
Algorithm Hash digest
SHA256 3f97c9a0729a1c611f5aeb63112cf5e4fbfaf16b31b63d407fbbafce5a08e0ca
MD5 347be57c5e1ab6c8678119edf28d4134
BLAKE2b-256 10b1739d208bafa03ab806e9ebb00c511cf3dd33dd8b2d01e9c23add91974c8a

See more details on using hashes here.

File details

Details for the file dingo_gw-0.6.2-py3-none-any.whl.

File metadata

  • Download URL: dingo_gw-0.6.2-py3-none-any.whl
  • Upload date:
  • Size: 217.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for dingo_gw-0.6.2-py3-none-any.whl
Algorithm Hash digest
SHA256 dfa26e44e53a8ab606a4e00a681b1dfc5c60b5375643c34524f157927daa6ce3
MD5 6dfddf6ceaa7fbd7f030c64f4aa261c9
BLAKE2b-256 f59f2471d29560e8c5fa151df4c4234a84cbe5962a5d03528120cddc4d0441f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page