Skip to main content
Join the official 2020 Python Developers SurveyStart the survey!

Python bindings for DIPlib, the quantitative image analysis library

Project description

Python bindings to DIPlib 3 (a.k.a. PyDIP)

Build Status Language grade: C/C++

Introduction

The purpose of the DIPlib project is to provide a one-stop library and development environment for quantitative image analysis, be it applied to microscopy, radiology, astronomy, or anything in between.

As oposed to all other image processing/analysis libraries and packages out there, DIPlib focuses on quantification. The first priority is precision, all other principles have a lower priority. Our principles are:

  1. Precision:

    We implement the most precise known methods, and output often defaults to floating-point samples. The purpose of these algorithms is quantification, not approximation.

  2. Ease of use

    Although our Python bindings are still quite rudimentary, and not much more than a thin wrapper of the C++ library functionality, the image analysis functionality is always easy to use. For example, the user does not, in general, need to be aware of the data type of the image to use these algorithms effectively.

  3. Efficiency

    We implement the most efficient known algorithms, as long as they don't compromise precision. Ease-of-use features might also incur a slight overhead in execution times. The library can be used in high-throughput quantitative analysis pipelines, but is not designed for real-time video processing.

Besides an extensive collection of image processing and analysis algorithms, this package contains DIPviewer, an interactive multi-dimensional image viewer, and DIPjavaio, an interface to the OME Bio-Formats library. The package is compatible with NumPy and any image processing package that uses a NumPy-compatible way of representing images.

See the DIPlib website for more information.

Installation

To install, simply type

pip install diplib

To read images through the Bio-Formats library, you will need to download it separately:

python -m diplib download_bioformats

Usage

The interface only has automatically generated docstrings that show the names of each of the parameters. Use the DIPlib reference to learn how to use each function. Get started by reading the User Manual.

These Jupyter notebooks give a short introduction:

License

Copyright 2014-2020 Cris Luengo and contributors
Copyright 1995-2014 Delft University of Technology

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this library except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
(or see the LICENSE.txt file in this distribution)

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for diplib, version 3.0b2
Filename, size File type Python version Upload date Hashes
Filename, size diplib-3.0b2-cp36-cp36m-manylinux2010_x86_64.whl (6.0 MB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size diplib-3.0b2-cp37-cp37m-macosx_10_14_x86_64.whl (5.5 MB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size diplib-3.0b2-cp37-cp37m-manylinux2010_x86_64.whl (6.0 MB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size diplib-3.0b2-cp38-cp38-macosx_10_14_x86_64.whl (5.6 MB) File type Wheel Python version cp38 Upload date Hashes View
Filename, size diplib-3.0b2-cp38-cp38-manylinux2010_x86_64.whl (6.0 MB) File type Wheel Python version cp38 Upload date Hashes View
Filename, size diplib-3.0b2-cp38-cp38-win_amd64.whl (4.2 MB) File type Wheel Python version cp38 Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page