Skip to main content

A tool providing multi-animal tracking capabilities on top of other Deep learning based tracking software.

Project description

DIPLOMAT

Deep learning-based Identity Preserving Labeled-Object Multi-Animal Tracking.

NOTE: DIPLOMAT is currently alpha software, there may be minor bugs and issues.

About

DIPLOMAT provides algorithms and tools for performing multi-animal identity preserving tracking on top of single animal and multi animal CNN based tracking packages. Currently, it supports running on both DeepLabCut and SLEAP projects. Unlike other multi-animal tracking packages, DIPLOMAT's algorithms work directly off confidence maps instead of running peak detection, allowing for more nuanced tracking results compared to other methods.

https://github.com/TravisWheelerLab/DIPLOMAT/assets/47544550/d805b673-4678-4297-b288-3fd08ad3cf62

Example of tracking 2 Degus in a Box Example of tracking 3 Rats

DIPLOMAT also includes a UI for performing tracking and several other tools for storing and visualizing confidence maps.

UI Demo Showing user correcting tracking in a video

Installation

DIPLOMAT also includes four environment configuration files for setting up DIPLOMAT with mamba, which can be installed on Windows, Linux, or MacOS using the Miniforge installer. To create an environment using mamba, run one of these four commands:

# Create the environment for using DIPLOMAT with DeepLabCut
# GPU:
mamba env create -f https://raw.githubusercontent.com/TravisWheelerLab/DIPLOMAT/main/conda-environments/DIPLOMAT-DEEPLABCUT.yaml
# CPU only:
mamba env create -f https://raw.githubusercontent.com/TravisWheelerLab/DIPLOMAT/main/conda-environments/DIPLOMAT-DEEPLABCUT-CPU.yaml
# OR Create an environment for using DIPLOMAT with SLEAP instead...
# GPU:
mamba env create -f https://raw.githubusercontent.com/TravisWheelerLab/DIPLOMAT/main/conda-environments/DIPLOMAT-SLEAP.yaml
# CPU only:
mamba env create -f https://raw.githubusercontent.com/TravisWheelerLab/DIPLOMAT/main/conda-environments/DIPLOMAT-SLEAP-CPU.yaml

And then activate the environment with one of these two commands:

# Activate the DeepLabCut/DIPLOMAT environment...
mamba activate DIPLOMAT-DEEPLABCUT
# Activate the SLEAP/DIPLOMAT environment...
mamba activate DIPLOMAT-SLEAP

For a more thorough explanation of the installation process and alternative installation methods, see the documentation.

Usage

Running DIPLOMAT

To run DIPLOMAT on a video once it is installed, simply use DIPLOMAT's unsupervised and supervised commands to track a video:

# Run DIPLOMAT with no UI...
diplomat track -c path/to/config -v path/to/video
# Run DIPLOMAT with UI...
diplomat track_and_interact -c path/to/config -v path/to/video

Multiple videos can be tracked by passing them as a list:

diplomat track -c path/to/config -v [path/to/video1, path/to/video2, "path/to/video3"]

Once tracking is done, DIPLOMAT can create labeled videos via it's annotate subcommand:

diplomat annotate -c path/to/config -v path/to/video

If you need to reopen the UI to make further major modifications, you can do so using the interact subcommand:

diplomat interact -s path/to/ui_state.dipui

This displays the full UI again for making further edits. Results are saved back to the same files.

If you need to make minor modifications after tracking a video, you can do so using the tweak subcommand:

diplomat tweak -c path/to/config -v path/to/video

This will display a stripped down version of the interactive editing UI, allowing for minor tweaks to be made to the tracks, and then saved back to the same file.

For a list of additional ways DIPLOMAT can be used, see the documentation.

Additional Help

All DIPLOMAT commands are documented via help strings. To get more information about a diplomat subcommand or command, simply run it with the -h or --help flag.

# Help for all of diplomat (lists sub commands of diplomat):
diplomat --help 
# Help for the track subcommand:
diplomat track --help
# Help for the predictors subcommand space:
diplomat predictors --help

Documentation

DIPLOMAT has documentation on ReadTheDocs at https://diplomat.readthedocs.io/en/latest.

Development

DIPLOMAT is written entirely in python. To set up an environment for developing DIPLOMAT, you can simply pull down this repository and install its requirements using pip. For a further description of how to set up DIPLOMAT for development, see the Development Usage section in the documentation.

Contributing

We welcome external contributions, although it is a good idea to contact the maintainers before embarking on any significant development work to make sure the proposed changes are a good fit.

Contributors agree to license their code under the license in use by this project (see LICENSE).

To contribute:

  1. Fork the repo
  2. Make changes on a branch
  3. Create a pull request

License

See LICENSE for details.

Authors

If you have any questions, feel free to reach out to Isaac Robinson, at isaac.k.robinson2000@gmail.com

See AUTHORS the full list of authors.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

diplomat_track-0.1.1.tar.gz (255.1 kB view details)

Uploaded Source

Built Distribution

diplomat_track-0.1.1-py3-none-any.whl (307.9 kB view details)

Uploaded Python 3

File details

Details for the file diplomat_track-0.1.1.tar.gz.

File metadata

  • Download URL: diplomat_track-0.1.1.tar.gz
  • Upload date:
  • Size: 255.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for diplomat_track-0.1.1.tar.gz
Algorithm Hash digest
SHA256 6bdaf5e32e0078a8ceceb01cb2df2cab7ec48b93ba6ae9e028042dda47e82284
MD5 e98835ad938444f409708b2587b78f1e
BLAKE2b-256 2aff83e8409fdb86865da14f48b3961f3de47132d05ec7871d01e45eb073b19e

See more details on using hashes here.

File details

Details for the file diplomat_track-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for diplomat_track-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3de1f43b29ca9b01054011815386ee2b6ed0aab0a118d16ce85226c283b9b36f
MD5 48a9efcc375716c6d29f76152f08b4dc
BLAKE2b-256 2be6eb563f2a2ce4edcc64648297d4ced10f4a61e86dba0db8f38adb450f0d35

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page