Skip to main content

A Python 3 Library for State-of-the-Art Statistical Dimension Reduction Methods

Project description

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques

This package delivers a scikit-learn compatible Python 3 package for some state-of-the art multivariate statistical methods, with a focus on dimension reduction.

The categories of methods delivered in this package, are:

The package also contains a set of tools for pre- and postprocessing:

  • The preprocessing folder provides classical and robust centring and scaling, as well as spatial sign transforms [4]
  • The dicomo folder contains a versatile class to access a wide variety of moment and co-moment statistics, and statistics derived from those. Check out the dicomo Examples Notebook.
  • Plotting utilities in the plot folder
  • Cross-validation utilities in the cross-validation folder

AIG sprm score space

Methods in the sprm folder

  • The estimator (sprm.py) [1]
  • The Sparse NIPALS (SNIPLS) estimator [3](snipls.py)
  • Robust M regression estimator (rm.py)
  • Ancillary functions for M-estimation (_m_support_functions.py)

Methods in the ppdire folder

The ppdire class will give access to a wide range of projection pursuit dimension reduction techniques. These include slower approximate estimates for well-established methods such as PCA, PLS and continuum regression. However, the class provides unique access to a set of robust options, such as robust continuum regression (RCR) [5], through its native grid optimization algorithm, first published for RCR as well [6]. Moreover, ppdire is also a great gateway to calculate generalized betas, using the CAPI projection index [7].

The code is orghanized in

  • ppdire.py - the main PP dimension reduction class
  • capi.py - the co-moment analysis projection index.

How to install

The package is distributed through PyPI, so install through:

    pip install direpack

Documentation

Detailed documentation on how to use the classes is provided in the docs folder per class.

Examples

Jupyter Notebooks with Examples are provided for each of the classes in the examples folder.

References

  1. Sparse partial robust M regression, Irene Hoffmann, Sven Serneels, Peter Filzmoser, Christophe Croux, Chemometrics and Intelligent Laboratory Systems, 149 (2015), 50-59.
  2. Partial robust M regression, Sven Serneels, Christophe Croux, Peter Filzmoser, Pierre J. Van Espen, Chemometrics and Intelligent Laboratory Systems, 79 (2005), 55-64.
  3. Sparse and robust PLS for binary classification, I. Hoffmann, P. Filzmoser, S. Serneels, K. Varmuza, Journal of Chemometrics, 30 (2016), 153-162.
  4. Spatial Sign Preprocessing:  A Simple Way To Impart Moderate Robustness to Multivariate Estimators, Sven Serneels, Evert De Nolf, Pierre J. Van Espen, Journal of Chemical Information and Modeling, 46 (2006), 1402-1409.
  5. Robust Continuum Regression, Sven Serneels, Peter Filzmoser, Christophe Croux, Pierre J. Van Espen, Chemometrics and Intelligent Laboratory Systems, 76 (2005), 197-204.
  6. Robust Multivariate Methods: The Projection Pursuit Approach, Peter Filzmoser, Sven Serneels, Christophe Croux and Pierre J. Van Espen, in: From Data and Information Analysis to Knowledge Engineering, Spiliopoulou, M., Kruse, R., Borgelt, C., Nuernberger, A. and Gaul, W., eds., Springer Verlag, Berlin, Germany, 2006, pages 270--277.
  7. Projection pursuit based generalized betas accounting for higher order co-moment effects in financial market analysis, Sven Serneels, in: JSM Proceedings, Business and Economic Statistics Section. Alexandria, VA: American Statistical Association, 2019, 3009-3035.

Release Notes can be checked out in the repository.

A list of possible topics for further development is provided as well. Additions and comments are welcome!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

direpack-0.9.0-py3-none-any.whl (48.1 kB view details)

Uploaded Python 3

File details

Details for the file direpack-0.9.0-py3-none-any.whl.

File metadata

  • Download URL: direpack-0.9.0-py3-none-any.whl
  • Upload date:
  • Size: 48.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.3

File hashes

Hashes for direpack-0.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9b4c932284311fad64927f38b0229944262b234b0e3102addbe6265294400fb3
MD5 a79ef7abcfff185a505426d3cd9cc13d
BLAKE2b-256 a4e7d2cc94f87f285a8e3f1b202cf3662f9a28a68a73fc9c857829e56399bdbe

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page