Python code for Dirichlet calibration
Project description
Dirichlet Calibration Python implementation
This is a Python implementation of the Dirichlet Calibration presented in Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with Dirichlet calibration at NeurIPS 2019.
Installation
# Clone the repository
git clone git@github.com:dirichletcal/dirichlet_python.git
# Go into the folder
cd dirichlet_python
# Create a new virtual environment with Python3
python3.8 -m venv venv
# Load the generated virtual environment
source venv/bin/activate
# Upgrade pip
pip install --upgrade pip
# Install all the dependencies
pip install -r requirements.txt
pip install --upgrade jaxlib
Unittest
python -m unittest discover dirichletcal
Cite
If you use this code in a publication please cite the following paper
@inproceedings{kull2019dircal,
title={Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with Dirichlet calibration},
author={Kull, Meelis and Nieto, Miquel Perello and K{\"a}ngsepp, Markus and Silva Filho, Telmo and Song, Hao and Flach, Peter},
booktitle={Advances in Neural Information Processing Systems},
pages={12295--12305},
year={2019}
}
Examples
You can find some examples on how to use this package in the folder examples
Pypi
To push a new version to Pypi first build the package
python3.8 setup.py sdist
And then upload to Pypi with twine
twine upload dist/*
It may require user and password if these are not set in your home directory a file .pypirc
[pypi]
username = __token__
password = pypi-yourtoken
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
dirichletcal-0.3.dev1.tar.gz
(12.3 kB
view details)
File details
Details for the file dirichletcal-0.3.dev1.tar.gz
.
File metadata
- Download URL: dirichletcal-0.3.dev1.tar.gz
- Upload date:
- Size: 12.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 63fa84906be3f80cc440e343b5309e042e9159897ee9aa9480dc9a14ab96aa65 |
|
MD5 | 8322929ed059d282884f0545e01191ba |
|
BLAKE2b-256 | c5725f6fa0b75fa10e923b3710b13fb7d3eaa38ea45e7a33de6b93753311a43f |