Machine learning with dirty categories.
Project description
dirty_cat is a Python module for machine-learning on dirty categorical variables.
Website: https://dirty-cat.github.io/
dirty_cat’s SuperVectorizer automatically turns pandas data frames into numerical arrays suitable for learning.
For a detailed description of the problem of encoding dirty categorical data, see Similarity encoding for learning with dirty categorical variables [1] and Encoding high-cardinality string categorical variables [2].
Installation
Dependencies
dirty_cat requires:
- Python (>= 3.6)
- NumPy (>= 1.16)
- SciPy (>= 1.2)
- scikit-learn (>= 0.21.0)
- pandas (>= 1.1.5)
Optional dependency:
- python-Levenshtein for faster edit distances (not used for the n-gram distance)
User installation
If you already have a working installation of NumPy and SciPy, the easiest way to install dirty_cat is using pip
pip install -U --user dirty_cat
Other implementations
References
[1] | Patricio Cerda, Gaël Varoquaux, Balázs Kégl. Similarity encoding for learning with dirty categorical variables. 2018. Machine Learning journal, Springer. |
[2] | Patricio Cerda, Gaël Varoquaux. Encoding high-cardinality string categorical variables. 2020. IEEE Transactions on Knowledge & Data Engineering. |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for dirty_cat-0.2.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b8369ae3d0102d6012f8c56b0a0372fd994aca47baca49a9b6f52f42086b8199 |
|
MD5 | 4834fde796bd18bf89a5b15f1cf0fd48 |
|
BLAKE2-256 | 453e2b9c299ef881da926b75cc5bc6d7469121d51fefdfbc53e9a55ac003d972 |