Skip to main content

Dirty models for python 3

Project description

travis-master coverall-master Documentation Status Latest Version Supported Python versions Development Status License Download format Supported Python implementations

Dirty Models

Dirty models for python 3


  • Python 3 package.
  • Easy to create a model.
  • Non destructive modifications.
  • Non false positive modifications.
  • Able to restore original data for each field or whole model.
  • Access to original data.
  • Read only fields.
  • Alias for fields.
  • Custom getters and setters for each fields.
  • Automatic cast value.
  • Easy import from/export to dict.
  • Basic field type implemented.
  • Multi type fields.
  • Default values for each field or whole model.
  • HashMap model. It could be used instead of DynamicModel.
  • FastDynamicModel. It could be used instead of DynamicModel. Same behavior, better performance.
  • Pickable models.
  • Datetime fields can use any datetime format using parser and formatter functions.
  • No database dependent.
  • Auto documentation using Dirty Models Sphinx extension.
  • Json encoder.
  • Field access like dictionary but with wildcards.
  • Opensource (BSD License)


Version 0.11.2

  • Fix bug #107.

  • Added ~dirty_models.utils.ModelIterator class in order to be able to iterate over model fields.

    from dirty_models.utils import ModelIterator
    for fieldname, field_obj, value in ModelIterator(my_model):
        print('Field name: {}'.format(fieldname))
        print('Field alias: {}'.format(field_obj.alias))
        print('Field value: {}'.format(value))
  • Some fixes about read only data.

Version 0.11.1

  • Distribution fixes.

Version 0.11.0

  • New field type ~dirty_models.fields.BytesField.
  • String to integer casting could use any format allowed by Python: HEX (0x23), OCT (0o43) or no-meaning underscores (1_232_232, only since Python 3.6).

Version 0.10.1

  • Factory<dirty_models.utils> feature. It allows to define a factory as default value in order to be executed each time model is instanced. (Issue #100)

    from dirty_models.utils import factory
    from datetime import datetime
    class Model(BaseModel):
       field_1 = DateTimeField(default=factory(
    model = Model()
    # 2017-11-02 21:52:46.339040
  • Makefile fixes.

  • Python 3.6 is supported officially. It works since first day, but now tests run on Travis for Python 3.6.

Version 0.10.0

  • Pickable lists.
  • Improved pickle performance.
  • Setting None to a field remove content.
  • More tests.
  • Some code improvements.

Version 0.9.2

  • Fix timezone when convert timestamp to datetime.

Version 0.9.1

  • Fix installation.

Version 0.9.0

  • New EnumField.
  • Fixes on
  • Fixes on requirements.
  • Fixes on formatter iters.
  • Fixes on code.
  • Added __version__ to main package file.
  • Synchronized version between main packege file, and docs.
  • Export only modifications.

Version 0.8.1

  • Added __contains__ function to models and lists. It allows to use in operator.
  • Added default_timezone parameter to DateTimeFields and TimeFields. If value entered has no a timezone defined, default one will be set.
  • Added force_timezone parameter to DateTimeFields in order to convert values to a specific timezone.
  • More cleanups.

Version 0.8.0

  • Renamed internal fields. Now they use double score format __fieldname__.
  • Raise a RunTimeError exception if two fields use same alias in a model.
  • Fixed default docstrings.
  • Cleanup default data. Only real name fields are allowed to use as key.
  • Added ~dirty_models.models.BaseModel.get_attrs_by_path in order to get all values using path.
  • Added ~dirty_models.models.BaseModel.get_1st_attr_by_path in order to get first value using path.
  • Added option to access fields like in a dictionary, but using wildcards. Only for getters. See: ~dirty_models.models.BaseModel.get_1st_attr_by_path.
  • Added some documentation.

Version 0.7.2

  • Fixed inherited structure
  • Added get_default_data method to models in order to retrieve default data.

Version 0.7.1

  • Solved problem formatting dynamic models
  • Added date, time and timedelta fields to dynamic models.

Version 0.7.0

  • Timedelta field
  • Generic formatters
  • Json encoder
import json
from datetime import datetime
from dirty_models import BaseModel, DatetimeField
from dirty_models.utils import JSONEncoder

class ExampleModel(BaseModel):
    field_datetime = DatetimeField(parse_format="%Y-%m-%dT%H:%M:%S")

model = ExampleModel(

assert json.dumps(model, cls=JSONEncoder) == '{"field_datetime": "2016-05-30T22:22:22"}'
  • Auto camelCase fields metaclass

Version 0.6.3

  • Documentation fixed.
  • Allow import main members from root package.

Version 0.6.2

  • Improved datetime fields parser and formatter definitions. Now there are three ways to define them:
  • Format string to use both parse and formatter:
class ExampleModel(BaseModel):
    datetime_field = DateTimeField(parse_format='%Y-%m-%dT%H:%M:%SZ')
  • Define a format string or function for parse and format datetime:
class ExampleModel(BaseModel):
    datetime_field = DateTimeField(parse_format={'parser': callable_func,
                                                 'formatter': '%Y-%m-%dT%H:%M:%SZ'})
  • Use predefined format:
DateTimeField.date_parsers = {
    'iso8061': {
        'formatter': '%Y-%m-%dT%H:%M:%SZ',
        'parser': iso8601.parse_date
class ExampleModel(BaseModel):
    datetime_field = DateTimeField(parse_format='iso8061')

Version 0.6.1

  • Improved model field autoreference.
class ExampleModel(BaseModel):
    model_field = ModelField()  # Field with a ExampleModel
    array_of_model = ArrayField(field_type=ModelField())  # Array of ExampleModels

Version 0.6.0

  • Added default value for fields.
class ExampleModel(BaseModel):
    integer_field = IntegerField(default=1)

model = ExampleModel()
assert model.integer_field is 1
  • Added default values at model level. Inherit default values could be override on new model classes.
class InheritExampleModel(ExampleModel):
    __default_data__ = {'integer_field': 2}

model = InheritExampleModel()
assert model.integer_field is 2
  • Added multi type fields.
class ExampleModel(BaseModel):
    multi_field = MultiTypeField(field_types=[IntegerField(), StringField()])

model = ExampleModel()
model.multi_field = 2
assert model.multi_field is 2

model.multi_field = 'foo'
assert model.multi_field is 'foo'

Version 0.5.2

  • Fixed model structure.
  • Makefile helpers.

Version 0.5.1

  • Added a easy way to get model structure. It will be used by autodoc libraries as sphinx or json-schema.

Version 0.5.0

  • Added autolist parameter to ArrayField. It allows to assign a single item to a list field, so it will be converted to a list with this value.
class ExampleModel(BaseModel):
    array_field = ArrayField(field_type=StringField(), autolist=True)

model = ExampleModel()
model.array_field = 'foo'
assert model.array_field[0] is 'foo'


$ pip install dirty-models


  • Getter and setter feature needs refactor to be able to use as decorators.
  • DynamicModel is too strange. I don’t trust in it. Try to use HashMapModel or FastDynamicModel.

Basic usage

from dirty_models.models import BaseModel
from dirty_models.fields import StringField, IntegerField

class FooBarModel(BaseModel):
    foo = IntegerField()
    bar = StringField(name="real_bar")
    alias_field = IntegerField(alias=['alias1', 'alias2'])

fb = FooBarModel() = 2
assert is 2 = 'wow'
assert is 'wow'
assert fb.real_bar is 'wow'

fb.alias_field = 3
assert fb.alias_field is 3
assert fb.alias1 is fb.alias_field
assert fb.alias2 is fb.alias_field
assert fb['alias_field'] is 3


More examples and documentation on

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
dirty_models-0.11.2-py3-none-any.whl (25.7 kB) Copy SHA256 hash SHA256 Wheel 3.6

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page