Skip to main content

Dirty models for python 3

Project description

travis-master coverall-master

dirty-models

Dirty models for python 3

Documentation

http://dirty-models.readthedocs.org

Features

  • Python 3 package.

  • Easy to create a model.

  • Non destructive modifications.

  • Non false positive modifications.

  • Able to restore original data for each field or whole model.

  • Access to original data.

  • Read only fields.

  • Alias for fields.

  • Custom getters and setters for each fields.

  • Automatic cast value.

  • Easy import from/export to dict.

  • Basic field type implemented.

  • HashMap model. It could be used instead of DynamicModel.

  • FastDynamicModel. It could be used instead of DynamicModel. Same behavior better performance.

  • Pickable models.

  • Datetime fields can use any datetime format using parser and formatter functions.

  • No database dependent.

Installation

$ pip install dirty-models

Issues

  • Getter and setter feature needs refactor to be able to use as decorators.

  • DynamicModel is too strange. I don’t trust in it. Try to use HashMapModel.

Basic usage

from dirty_models.models import BaseModel
from dirty_models.fields import StringField, IntegerField

class FooBarModel(BaseModel):
    foo = IntegerField()
    bar = StringField(name="real_bar")
    alias_field = IntegerField(alias=['alias1', 'alias2'])



fb = FooBarModel()

fb.foo = 2
assert fb.foo is 2

fb.bar = 'wow'
assert fb.bar is 'wow'
assert fb.real_bar is 'wow'

fb.alias_field = 3
assert fb.alias_field is 3
assert fb.alias1 is fb.alias_field
assert fb.alias2 is fb.alias_field

Performance Tests

$ python3 performancerunner.py
DynamicModel start
DynamicModel: iteration no. 0 start
DynamicModel: iteration no. 0 => 0:00:02.528166
DynamicModel: iteration no. 1 start
DynamicModel: iteration no. 1 => 0:00:03.415274
DynamicModel: iteration no. 2 start
DynamicModel: iteration no. 2 => 0:00:03.115128
DynamicModel: iteration no. 3 start
DynamicModel: iteration no. 3 => 0:00:04.091488
DynamicModel: iteration no. 4 start
DynamicModel: iteration no. 4 => 0:00:05.275302
DynamicModel => 0:00:18.425358
FastDynamicModel start
FastDynamicModel: iteration no. 0 start
FastDynamicModel: iteration no. 0 => 0:00:01.351796
FastDynamicModel: iteration no. 1 start
FastDynamicModel: iteration no. 1 => 0:00:01.265681
FastDynamicModel: iteration no. 2 start
FastDynamicModel: iteration no. 2 => 0:00:01.270142
FastDynamicModel: iteration no. 3 start
FastDynamicModel: iteration no. 3 => 0:00:01.273443
FastDynamicModel: iteration no. 4 start
FastDynamicModel: iteration no. 4 => 0:00:01.280512
FastDynamicModel => 0:00:06.441574
BlobField start
BlobField: iteration no. 0 start
BlobField: iteration no. 0 => 0:00:00.000082
BlobField: iteration no. 1 start
BlobField: iteration no. 1 => 0:00:00.000027
BlobField: iteration no. 2 start
BlobField: iteration no. 2 => 0:00:00.000025
BlobField: iteration no. 3 start
BlobField: iteration no. 3 => 0:00:00.000024
BlobField: iteration no. 4 start
BlobField: iteration no. 4 => 0:00:00.000023
BlobField => 0:00:00.000181
{'DynamicModel': {'results': [datetime.timedelta(0, 2, 528166), datetime.timedelta(0, 3, 415274), datetime.timedelta(0, 3, 115128), datetime.timedelta(0, 4, 91488), datetime.timedelta(0, 5, 275302)], 'total': datetime.timedelta(0, 18, 425358)}, 'FastDynamicModel': {'results': [datetime.timedelta(0, 1, 351796), datetime.timedelta(0, 1, 265681), datetime.timedelta(0, 1, 270142), datetime.timedelta(0, 1, 273443), datetime.timedelta(0, 1, 280512)], 'total': datetime.timedelta(0, 6, 441574)}, 'BlobField': {'results': [datetime.timedelta(0, 0, 82), datetime.timedelta(0, 0, 27), datetime.timedelta(0, 0, 25), datetime.timedelta(0, 0, 24), datetime.timedelta(0, 0, 23)], 'total': datetime.timedelta(0, 0, 181)}}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dirty-models-0.4.0.tar.gz (11.7 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page