Skip to main content

Validate library for python 3

Project description

travis-master coverall-master


Agnostic validators for python 3

Freely based on [WTF-Forms]( validators.


  • Python 3 package.

  • Easy to create a validator.

  • Chained validations.

  • Conditional validations.

  • Specific error control messages.

  • Dirty model integration (

  • No database dependent.

  • Asynchronous validators.

  • Stateless validators.

  • Deferred validators.


Version 0.6.0

The stateless refactor. Dirty validators now are full stateless. It means now there is no messages on validator instance. The is_valid method returns a validation context. It is evaluated as True if there were no errors and false otherwise. So, it is possible to still to use checks like if validator.is_valid(my_data): but we recomend to use the Walruf operator ( if result := validator.is_valid(my_data):. That is important because messages are stored on context.

# Python +3.8
if result := validator.is_valid(my_data):
    # some code


if not (result := validator.is_valid(my_data)):

On the other hand, validation error messages now are an object. It stores error code, error message template and context values. There is a helper function from_context_to_legacy_message in order to convert a context to legacy message format.

  • Stateless refactor

  • New Context class stores state of validation process.

  • New ValidationErrorMessage class to store validation error messages.

  • New Deferred validator in order to build validator on runtime depending on context.

  • New from_context_to_legacy_message helper.

Version 0.5.4

  • Allow model validator inheritance.

Version 0.5.2

  • Remove hard dependency from Dirty Models.

  • Fix bug iterating ListModels.

Version 0.5.1

  • Added value validators for mappings.

Version 0.5.0

  • Added asynchronous validators.

Version 0.4.0

  • Added <root> keyword in order to look up a field from root model of context.

  • Added key_validator argument for spec validators in order to validate keys on hashmaps.


$ pip install dirty-validators

Basic usage

from dirty_validators.basic import EqualTo, Length, Regexp, Email
from dirty_validators.complex import Optional, ModelValidate

validator = Optional(validators=[EqualTo(comp_value="test")])

assert validator.is_valid("test") is True

# Chained validation
validator_chain = Chain(validators=[Length(min=14, max=16), Regexp(regex='^abc'), Email()])

assert validator_chain.is_valid('')

# Model validation

class MyModelValidator(ModelValidate):
    fieldName1 = Optional(validators=[Length(min=4, max=6)])
    fieldName2 = Optional(validators=[Length(min=1, max=2)])
    fieldName3 = Required(validators=[Length(min=7, max=8)])

validator_model = MyModelValidator()

data = {
    "fieldName1": "1234",
    "fieldName1": "12",
    "fieldName3": "123456qw"

assert validator_model.is_valid(FakeModel(data)) is True

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release. See tutorial on generating distribution archives.

Built Distribution

dirty_validators-0.6.0b2-py3-none-any.whl (16.4 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page