Skip to main content

Numba-accelerated computation of surface wave dispersion

Project description

License Stars Pyversions Version Downloads Code style: black Codacy Badge Codecov Build Travis Awesome DOI

disba is a computationally efficient Python library for the modeling of surface wave dispersion that implements a subset of codes from Computer Programs in Seismology (CPS) in Python compiled just-in-time with numba. Such implementation alleviates the usual prerequisite for a Fortran compiler needed by other libraries also based on CPS (e.g., pysurf96, srfpython and PyLayeredModel) which often leads to further installation troubleshooting, especially on Windows platform.

disba aims to be lightweight and portable without compromising on the performance. For both Rayleigh-wave and Love-wave, it is significantly faster than CPS’s surf96 program compiled with f2py, noticeably for large number of layers.

perf-rayleigh

perf-love

Features

Forward modeling:

  • Compute Rayleigh-wave phase or group dispersion curves using Dunkin’s matrix or fast delta matrix algorithms,

  • Compute Love-wave phase or group dispersion curves using Thomson-Haskell method,

  • Compute Rayleigh-wave ellipticity.

Eigenfunctions and sensitivity kernels:

  • Compute Rayleigh- and Love- wave eigenfunctions,

  • Compute Rayleigh- and Love- wave phase or group velocity, and Rayleigh-wave ellipticity sensitivity kernels with respect to layer thickness, P- and S- wave velocities, and density.

Installation

The recommended way to install disba and all its dependencies is through the Python Package Index:

pip install disba[full] --user

Otherwise, clone and extract the package, then run from the package location:

pip install .[full] --user

To test the integrity of the installed package, check out this repository and run:

pytest

Documentation

Refer to the online documentation for detailed description of the API and examples.

Alternatively, the documentation can be built using Sphinx:

pip install -r doc/requirements.txt
sphinx-build -b html doc/source doc/build

Usage

The following example computes the Rayleigh- and Love- wave phase velocity dispersion curves for the 3 first modes.

import numpy as np
from disba import PhaseDispersion

# Velocity model
# thickness, Vp, Vs, density
# km, km/s, km/s, g/cm3
velocity_model = np.array([
   [10.0, 7.00, 3.50, 2.00],
   [10.0, 6.80, 3.40, 2.00],
   [10.0, 7.00, 3.50, 2.00],
   [10.0, 7.60, 3.80, 2.00],
   [10.0, 8.40, 4.20, 2.00],
   [10.0, 9.00, 4.50, 2.00],
   [10.0, 9.40, 4.70, 2.00],
   [10.0, 9.60, 4.80, 2.00],
   [10.0, 9.50, 4.75, 2.00],
])

# Periods must be sorted starting with low periods
t = np.logspace(0.0, 3.0, 100)

# Compute the 3 first Rayleigh- and Love- wave modal dispersion curves
# Fundamental mode corresponds to mode 0
pd = PhaseDispersion(*velocity_model.T)
cpr = [pd(t, mode=i, wave="rayleigh") for i in range(3)]
cpl = [pd(t, mode=i, wave="love") for i in range(3)]

# pd returns a namedtuple (period, velocity, mode, wave, type)

sample-rayleigh

sample-love

Likewise, GroupDispersion can be used for group velocity.

disba’s API is consistent across all its classes which are initialized and called in the same fashion. Thus, eigenfunctions are calculated as follow:

from disba import EigenFunction

eigf = EigenFunction(*velocity_model.T)
eigr = eigf(20.0, mode=0, wave="rayleigh")
eigl = eigf(20.0, mode=0, wave="love")

# eigf returns a namedtuple
#  - (depth, ur, uz, tz, tr, period, mode) for Rayleigh-wave
#  - (depth, uu, tt, period, mode) for Love-wave

eigen-rayleigh

eigen-love

Phase velocity sensitivity kernels (GroupSensitivity for group velocity):

from disba import PhaseSensitivity

ps = PhaseSensitivity(*velocity_model.T)
parameters = ["thickness", "velocity_p", "velocity_s", "density"]
skr = [ps(20.0, mode=0, wave="rayleigh", parameter=parameter) for parameter in parameters]
skl = [ps(20.0, mode=0, wave="love", parameter=parameter) for parameter in parameters]

# ps returns a namedtuple (depth, kernel, period, velocity, mode,wave, type, parameter)

kernel-rayleigh

kernel-love

Ellipticity and ellipticity sensitivity kernels:

from disba import Ellipticity, EllipticitySensitivity

ell = Ellipticity(*velocity_model.T)
rel = ell(t, mode=0)

# ell returns a namedtuple (period, ellipticity, mode)

es = EllipticitySensitivity(*velocity_model.T)
ek = [es(20.0, mode=0, parameter=parameter) for parameter in parameters]

# es returns a namedtuple (depth, kernel, period, velocity, mode, wave, type, parameter)

sample-ellipticity

kernel-ellipticity

Contributing

Please refer to the Contributing Guidelines to see how you can help. This project is released with a Code of Conduct which you agree to abide by when contributing.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

disba-0.6.1.tar.gz (24.2 kB view details)

Uploaded Source

Built Distribution

disba-0.6.1-py3-none-any.whl (26.2 kB view details)

Uploaded Python 3

File details

Details for the file disba-0.6.1.tar.gz.

File metadata

  • Download URL: disba-0.6.1.tar.gz
  • Upload date:
  • Size: 24.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for disba-0.6.1.tar.gz
Algorithm Hash digest
SHA256 bb9180b0b9023899cffba21c31e0c259dd992afd4b064caadd6bdb8a1dbcd04d
MD5 04704bb7afe05b10178b1df6b2d5becc
BLAKE2b-256 b77988e1358ff66e0feb9b56c255b9575e36bb14c5332ee006db5c07a030d3b2

See more details on using hashes here.

File details

Details for the file disba-0.6.1-py3-none-any.whl.

File metadata

  • Download URL: disba-0.6.1-py3-none-any.whl
  • Upload date:
  • Size: 26.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for disba-0.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3a82ee2f8a24e04e5bd5f03d34d04247e965af9cb222496ff259385630c19f85
MD5 1a29af22e2aa606856882010707ff178
BLAKE2b-256 c69f8a6a31e78137a13173a254ccac0150896b76b1c51b6dbe310757fe47dcff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page