Skip to main content

Augmented Intent Single Task Adaptive Components

Project description

Project Hadron Foundation package is an open-source application framework, written in pure Python using PyArrow as its canonical and depends on Python and pyArrow packages only. It provides a set of abstractions that allow a quick to market solution of component services (microservices) relevant to a use case. Component services are built for tasks called capabilities with each capability performing a single function. Because they are independently run, each capability can be updated, deployed, and scaled to meet demand for specific functions of an application.

What are capabilities?

In project Hadron capabilities are components that adhere to the fundamental concepts of capability patterns and separation of concern (SoC). They are design principle that advocates breaking a software system into distinct, independent modules or components with, low coupling and high cohesion each addressing a specific concern or aspect of the system’s functionality.

Capabilities are reusable and encapsulated tasks which can be applied at any stage of the life cycle and prescribes a work breakdown structure of functionalities and features a software solution possesses.

Together, capability patterns help in understanding what a reusable component task should achieve, while separation of concerns ensures that the component task is designed in a modular and maintainable way, with each part addressing a specific aspect of its functionality. Both principles contribute to building modular, robust and scalable software solutions.

The build overview

At the heart of Project Hadron is a multi-tenant, NoSQL, singleton, in memory data store that has minimal code and functionality and has been custom built specifically for Hadron tasks in mind. Abstracted from this is the component store which allows us to build a reusable set of methods that define each tenanted component that sits separately from the store itself. In addition, a dynamic key value class provides labeling so that each tenant is not tied to a fixed set of reference values unless by specificity. Each of the classes, the data store, the component property manager, and the key value pairs that make up the component are all independent, giving complete flexibility and minimum code footprint to the build process of new components.

Installation

package install

The best way to install this package is directly from the Python Package Index repository using pip

$ pip install discovery-core

if you want to upgrade your current version then using pip

$ pip install --upgrade discovery-core

Package Overview

AbstractComponent

The AbstractComponent class is a foundation class for the component build. It provides an encapsulated view of the Property Management and Parameterised Intent

Abstract AI Single Task Application Component (AI-STAC) component class provides all the basic building blocks of a components build including property management, augmented knowledge notes and parameterised intent pipeline.

For convenience there are three Factory Initialisation methods available``from_env(…)``, from_memory(...) and from_uri(...) the first two being abstract methods. The thrid factory method initialises the concrete PropertyManager and IntentModel classes and use the parent _init_properties(...) methods to set the properties connector. When creating the concrete class the from_uri(...) should be implemented. The following method can be used as a template replacing ExamplePropertyManager and ExampleIntentModel with your oen concrete implementations

@classmethod
def from_uri(cls, task_name: str, uri_pm_path: str, username: str, uri_pm_repo: str=None,
             pm_file_type: str=None, pm_module: str=None, pm_handler: str=None, pm_kwargs: dict=None,
             default_save=None, reset_templates: bool=None, template_path: str=None, template_module: str=None,
             template_source_handler: str=None, template_persist_handler: str=None, align_connectors: bool=None,
             default_save_intent: bool=None, default_intent_level: bool=None, order_next_available: bool=None,
             default_replace_intent: bool=None, has_contract: bool=None):
    pm_file_type = pm_file_type if isinstance(pm_file_type, str) else 'parquet'
    pm_module = pm_module if isinstance(pm_module, str) else cls.DEFAULT_MODULE
    pm_handler = pm_handler if isinstance(pm_handler, str) else cls.DEFAULT_PERSIST_HANDLER
    _pm = ExamplePropertyManager(task_name=task_name, username=username)
    _intent_model = ExampleIntentModel(property_manager=_pm, default_save_intent=default_save_intent,
                                       default_intent_level=default_intent_level,
                                       order_next_available=order_next_available,
                                       default_replace_intent=default_replace_intent)
    super()._init_properties(property_manager=_pm, uri_pm_path=uri_pm_path, default_save=default_save,
                             uri_pm_repo=uri_pm_repo, pm_file_type=pm_file_type, pm_module=pm_module,
                             pm_handler=pm_handler, pm_kwargs=pm_kwargs, has_contract=has_contract)
    return cls(property_manager=_pm, intent_model=_intent_model, default_save=default_save,
               reset_templates=reset_templates, template_path=template_path, template_module=template_module,
               template_source_handler=template_source_handler, template_persist_handler=template_persist_handler,
               align_connectors=align_connectors)

AbstractPropertyManager

The AbstractPropertiesManager facilitates the management of all the contract properties including that of the connector handlers, parameterised intent and Augmented Knowledge

Abstract AI Single Task Application Component (AI-STAC) class that creates a super class for all properties managers

The Class initialisation is abstracted and is the only abstracted method. A concrete implementation of the overloaded __init__ manages the root_key and knowledge_key for this construct. The root_key adds a key property reference to the root of the properties and can be referenced directly with <name>_key. Likewise the knowledge_key adds a catalog key to the restricted catalog keys.

More complex root_key constructs, where a grouping of keys might be desirable, passing a dictionary of name value pairs as part of the list allows a root base to group related next level keys. For example

root_key = [{base: [primary, secondary}]

would add base.primary_key and base.secondary_key to the list of keys.

Here is a default example of an initialisation method:

def __init__(self, task_name: str):
    # set additional keys
    root_keys = []
    knowledge_keys = []
    super().__init__(task_name=task_name, root_keys=root_keys, knowledge_keys=knowledge_keys)

The property manager is not responsible for persisting the properties but provides the methods to load and persist its in memory structure. To initialise the load and persist a ConnectorContract must be set up.

The following is a code snippet of setting a ConnectorContract and loading its content

self.set_property_connector(connector_contract=connector_contract)
if self.get_connector_handler(self.CONNECTOR_PM_CONTRACT).exists():
    self.load_properties(replace=replace)

When using the property manager it will not automatically persist its properties and must be explicitely managed in the component class. This removes the persist decision making away from the property manager. To persist the properties use the method call persist_properties()

AbstractIntentModel

The AbstractIntentModel facilitates the Parameterised Intent, giving the base methods to record and replay intent.

Abstract AI Single Task Application Component (AI-STAC) Class for Parameterised Intent containing parameterised intent registration methods _intent_builder(...) and _set_intend_signature(...).

it is creating a construct initialisation to allow for the control and definition of an intent_param_exclude list, default_save_intent boolean and a default_intent_level value.

As an example of an initialisation method

def __init__(self, property_manager: AbstractPropertyManager, default_save_intent: bool=None,
             default_intent_level: bool=None, order_next_available: bool=None, default_replace_intent: bool=None):
    # set all the defaults
    default_save_intent = default_save_intent if isinstance(default_save_intent, bool) else True
    default_replace_intent = default_replace_intent if isinstance(default_replace_intent, bool) else True
    default_intent_level = default_intent_level if isinstance(default_intent_level, (str, int, float)) else 0
    default_intent_order = -1 if isinstance(order_next_available, bool) and order_next_available else 0
    intent_param_exclude = ['data', 'inplace']
    intent_type_additions = []
    super().__init__(property_manager=property_manager, default_save_intent=default_save_intent,
                     intent_param_exclude=intent_param_exclude, default_intent_level=default_intent_level,
                     default_intent_order=default_intent_order, default_replace_intent=default_replace_intent,
                     intent_type_additions=intent_type_additions)

in order to define the run pattern for the component task run_intent_pipeline(...) is an abstracted method that defines the run pipeline of the intent.

As an example of a run_pipeline that iteratively updates a canonical with each intent

def run_intent_pipeline(self, canonical, intent_levels: [int, str, list]=None, **kwargs):
    # test if there is any intent to run
    if self._pm.has_intent():
        # get the list of levels to run
        if isinstance(intent_levels, (int, str, list)):
            intent_levels = Commons.list_formatter(intent_levels)
        else:
            intent_levels = sorted(self._pm.get_intent().keys())
        for level in intent_levels:
            level_key = self._pm.join(self._pm.KEY.intent_key, level)
            for order in sorted(self._pm.get(level_key, {})):
                for method, params in self._pm.get(self._pm.join(level_key, order), {}).items():
                    if method in self.__dir__():
                        # add method kwargs to the params
                        if isinstance(kwargs, dict):
                            params.update(kwargs)
                        # add excluded parameters to the params
                        params.update({'inplace': False, 'save_intent': False})
                        canonical = eval(f"self.{method}(canonical, **{params})", globals(), locals())
    return canonical

The code signature for an intent method would have the following construct

def <method>(self, <params>..., save_intent: bool=None, intent_level: [int, str]=None, intent_order: int=None,
             replace_intent: bool=None, remove_duplicates: bool=None):
    # resolve intent persist options
    self._set_intend_signature(self._intent_builder(method=inspect.currentframe().f_code.co_name, params=locals()),
                               intent_level=intent_level, intent_order=intent_order, replace_intent=replace_intent,
                               remove_duplicates=remove_duplicates, save_intent=save_intent)
    # intend code block on the canonical
    ...

Reference

Python version

Python 3.7 or less is not supported. Although Python 3.8 is supported, it is recommended to install discovery-core against the latest Python release.

Licence

MIT License: https://opensource.org/license/mit/.

Authors

Gigas64 (@gigas64) created discover-core.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discovery_core-3.0.1.tar.gz (86.4 kB view details)

Uploaded Source

Built Distribution

discovery_core-3.0.1-py38-none-any.whl (106.3 kB view details)

Uploaded Python 3.8

File details

Details for the file discovery_core-3.0.1.tar.gz.

File metadata

  • Download URL: discovery_core-3.0.1.tar.gz
  • Upload date:
  • Size: 86.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for discovery_core-3.0.1.tar.gz
Algorithm Hash digest
SHA256 db0f5a773cc427a6bb396d21438d657e011e4d69098d349e6dccad07dc80f575
MD5 1ec7628d798e14bf1c4a94a46cf83349
BLAKE2b-256 61ae288e7cdded8d27127ce17038224572fb3d469ba7ea23c94dde3dcb694f97

See more details on using hashes here.

File details

Details for the file discovery_core-3.0.1-py38-none-any.whl.

File metadata

File hashes

Hashes for discovery_core-3.0.1-py38-none-any.whl
Algorithm Hash digest
SHA256 7e36f99259ad7b87f6f72ab83fdbfff1b20bb32309ec436f7d470cad3b63fdd6
MD5 8fa23823e10aa2b21c6de04474d080a5
BLAKE2b-256 293972d14ca9178a9f7e2d4188fbb082ef26f19b8b4d280882033019ab7c4fb3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page