Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Discretize Logo

discretize

Latest PyPI version Latest conda-forge version MIT license Azure pipelines build status Coverage status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/discourse/users?server=http%3A%2F%2Fsimpeg.discourse.group%2F https://img.shields.io/badge/simpeg-purple?logo=mattermost&label=Mattermost https://img.shields.io/badge/Youtube%20channel-GeoSci.xyz-FF0000.svg?logo=youtube

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

  • Triangular (2D) and Tetrahedral (3D) Meshes

Installing

discretize is on conda-forge, and is the recommended installation method.

conda install -c conda-forge discretize

Prebuilt wheels of discretize are on pypi for most platforms

pip install discretize

To install from source, note this requires a c++ compiler supporting the c++17 standard.

git clone https://github.com/simpeg/discretize.git
cd discretize
pip install .

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.11.0.tar.gz (252.9 kB view details)

Uploaded Source

Built Distributions

discretize-0.11.0-cp313-cp313-win_amd64.whl (961.9 kB view details)

Uploaded CPython 3.13 Windows x86-64

discretize-0.11.0-cp313-cp313-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

discretize-0.11.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

discretize-0.11.0-cp313-cp313-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

discretize-0.11.0-cp313-cp313-macosx_10_13_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

discretize-0.11.0-cp312-cp312-win_amd64.whl (961.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

discretize-0.11.0-cp312-cp312-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

discretize-0.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

discretize-0.11.0-cp312-cp312-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

discretize-0.11.0-cp312-cp312-macosx_10_13_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

discretize-0.11.0-cp311-cp311-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

discretize-0.11.0-cp311-cp311-musllinux_1_2_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

discretize-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

discretize-0.11.0-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

discretize-0.11.0-cp311-cp311-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

discretize-0.11.0-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

discretize-0.11.0-cp310-cp310-musllinux_1_2_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

discretize-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

discretize-0.11.0-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

discretize-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file discretize-0.11.0.tar.gz.

File metadata

  • Download URL: discretize-0.11.0.tar.gz
  • Upload date:
  • Size: 252.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for discretize-0.11.0.tar.gz
Algorithm Hash digest
SHA256 00a07aa32413aa05f95881d42813ce7833366f7b7da01e42f877f6edd63d677d
MD5 f474111910fdff080f7a8216bcae7c82
BLAKE2b-256 3a5ba019bd5d47d31148ac299a3192d1525d096ddd810e38d6ad4ffd478d89bf

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 ff0c23cbcea7fbbb6e699bf11b20ddd1ba401dcf166aa9f636539a149114d1d5
MD5 2f1f18db23ff258ea4756977ca9b3663
BLAKE2b-256 7e06339630bf0e9668933671962c74b75338fc7eda1cf5865bac6aa914752f6a

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4ecbfff782194ec8220ea9f878c522d792cff5a182519d04278baea0a2b289cf
MD5 79c0533868a0dbc0b1657e080e93c6a6
BLAKE2b-256 994df55ad71c86db6023a6868039565022a2be28be6cf86ac0677df3a91d17e3

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 42ece2683ee24e98dfd55e71c481c5b34f55e077e86454b02c0aca8314dd4fea
MD5 0bf28e4b4641561e27141d899411c7c0
BLAKE2b-256 e4539b4892bb86bc671d5f44108dc58f276e8e9e95069207463f665860e1d0f3

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 edb305f5b43cb1daa9f370ca1822baaf1cfd8a8ffddcfc2330ea9722ab919c1a
MD5 1a66b83f67411d4ee2953ae69f2c4809
BLAKE2b-256 5301b38d8b4b19e4810753d5b34c1069d94035cc332129f123b689e45e4ab982

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 01a0daf287a8a12d958ff17ab69eb73d1f18f6289d1bb81b7d2a9ddfeda20867
MD5 fadb7175796108eeff8f761063cbb72b
BLAKE2b-256 ae3b2d1b98e79ed4347a0b8b0fd981732cab9d630f9f305fd9b14ecd69655379

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 661cf1a5ce0537909eea3c334f00890fc26b57012b16977cd8e646b9e6948e19
MD5 9ad8e25afa20dd2a5f9227318b57212c
BLAKE2b-256 35362790a2b7ce575c982a79c48c74cce4816a5b330e4d12c933b81bcc160056

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2d43cd34a7e6290e05cbfda2245639a023af4bd769ccdd924e1636d34ef82144
MD5 c769bf77760e3f61446b3adbbdfc166d
BLAKE2b-256 fb634fb33930a452bae7115951145f20f826a7a6eff96075a32d9ed778490b8d

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e9d7f76f43a41b6d95103001d5f54c3bab14a608b49a7b30f516332d5247976e
MD5 d734c54ba5c8b53dec851ace967b366f
BLAKE2b-256 acc91ddec33cdee5a37921056ee58f4be5a5b62c736ee320ae0b8d7acedbf0c7

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e0c1f7ec667311bf92afc1ae04192de8796c3bb9a82778b66ce6b1c065303cdc
MD5 fb95f24bfa9bff2fbd953f870107face
BLAKE2b-256 42c952f0b635e4b8714ddec62dea6c1594915eb9a93104234c4069075740baaa

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 34a0223672515d8450239cfdf1d1a43d9fc361561ab993e1083b305956a15ded
MD5 b21bc73192433cb36c6f4c89a6354ccd
BLAKE2b-256 e6bde57c295fce863ea8a37c2e276d73ced289c2816d8996c7e36d212fed70b3

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6387200583b2ff04aee8491e453bb7ed3d2f295a21292dccfa1286781410f4c3
MD5 c0eb5da4d8a38bbe40c56e900b14a4ed
BLAKE2b-256 5ed54b4a3f052302dfb3cd59b7b431a5a09ad2bbb4397b82acd269723d59f76a

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 231cf09f72caf75fdae8f778f98a8a9518655865173b3ff5d900fe36dc028cd2
MD5 ba1c5dd5d80da9b9b7b9153bdeddd513
BLAKE2b-256 4014da05e565634084514f07f132c36062665f4c738f39f31f3a2e3b0c9b8a73

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a70f677acfa1eab1c247474e38037eb72c588804a1b82cbe61ee5c66e857e453
MD5 0bdc5d448b2aab9a51bb50699d978d77
BLAKE2b-256 3c6b2078d2c548bd60d548c39845f98a38f9a4de64cc7c72935be19851b714a2

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 deedbd2c1a9f37d691bf6a578795deefcc897cb4624315f20e68d5d4049eaa52
MD5 b145059a6e7a5db9ddaa4f1f574df025
BLAKE2b-256 38253b1211f321506bf67fec324c6846db350c288522aef72bcb0fd0b188761a

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4298f91b11539250565095871ccaf551a7a0639ddeaddf9d478a79971bcbaf37
MD5 401e78852ba9c6865b864fdf3412e0e4
BLAKE2b-256 b639728b6811b660b2b4cf97d7638d16da934f758e598995eb9f1314c5a64148

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b680d747283e79b7332694d18d14db4f06b6d074672ee6aab746dc6d5fcc0491
MD5 4256958da4b526b93c590cd199ebd09e
BLAKE2b-256 5a01e4c09bb5ab8a4dad060e40b4a279764cbcefa21b6b70c40c86ee00e5bef6

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7e3aef21c79086bfb143dd54eb444984a044b8c788342bcee91265343f18a2e8
MD5 61aa9d3427528599285c8a2aeb342eb0
BLAKE2b-256 4474856b5943eaae7ac740cc165e88283c9068b23981d1c74e6fd8a3e9410312

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b459e9985fe05e9000a77547e7c69aff01617dd31d6515a9c8e0d2cc09d7db7b
MD5 269a5ce5ebfb94053e295c83c5e716c7
BLAKE2b-256 a434f38daa06633f729c116f21e272cb7ca5dbdadf841ebd0a815396f418891b

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6a7d1a5a968c8b2563a3658656a7d61bdbbd895b7e95ce6b9e6f5b2105f00baf
MD5 68896258894c999f72195824bc3f043d
BLAKE2b-256 50d2979d34af01432cd7c95b33b4ef2c8fc7026002d690b782a67e7900346c92

See more details on using hashes here.

File details

Details for the file discretize-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9bb6730624e0e714df9d317ab708cc805dac62a1ddb3e040bac1c0e3680602eb
MD5 c804d9bae29d75775d35d6f579a2f240
BLAKE2b-256 be34d64adf15db6ba330fe27d924329f2bdd14cf39ddcf96dd325e1a52a45785

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page