Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Discretize Logo

discretize

Latest PyPI version Latest conda-forge version MIT license Azure pipelines build status Coverage status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/discourse/users?server=http%3A%2F%2Fsimpeg.discourse.group%2F https://img.shields.io/badge/simpeg-purple?logo=mattermost&label=Mattermost https://img.shields.io/badge/Youtube%20channel-GeoSci.xyz-FF0000.svg?logo=youtube

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

  • Triangular (2D) and Tetrahedral (3D) Meshes

Installing

discretize is on conda-forge, and is the recommended installation method.

conda install -c conda-forge discretize

Prebuilt wheels of discretize are on pypi for most platforms

pip install discretize

To install from source, note this requires a c++ compiler supporting the c++17 standard.

git clone https://github.com/simpeg/discretize.git
cd discretize
pip install .

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.11.1.tar.gz (253.3 kB view details)

Uploaded Source

Built Distributions

discretize-0.11.1-cp313-cp313-win_amd64.whl (962.3 kB view details)

Uploaded CPython 3.13 Windows x86-64

discretize-0.11.1-cp313-cp313-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

discretize-0.11.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

discretize-0.11.1-cp313-cp313-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

discretize-0.11.1-cp313-cp313-macosx_10_13_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

discretize-0.11.1-cp312-cp312-win_amd64.whl (962.4 kB view details)

Uploaded CPython 3.12 Windows x86-64

discretize-0.11.1-cp312-cp312-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

discretize-0.11.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

discretize-0.11.1-cp312-cp312-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

discretize-0.11.1-cp312-cp312-macosx_10_13_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

discretize-0.11.1-cp311-cp311-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

discretize-0.11.1-cp311-cp311-musllinux_1_2_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

discretize-0.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

discretize-0.11.1-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

discretize-0.11.1-cp311-cp311-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

discretize-0.11.1-cp310-cp310-win_amd64.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

discretize-0.11.1-cp310-cp310-musllinux_1_2_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

discretize-0.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

discretize-0.11.1-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

discretize-0.11.1-cp310-cp310-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file discretize-0.11.1.tar.gz.

File metadata

  • Download URL: discretize-0.11.1.tar.gz
  • Upload date:
  • Size: 253.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for discretize-0.11.1.tar.gz
Algorithm Hash digest
SHA256 b8323b8f8f46beb5aad4f2953be09822419c5fc4a1697c3f3fa84d6f715b89cb
MD5 398dac5fb9de5f9e97bb574c9befa3be
BLAKE2b-256 d248aa335ab1aa91abf008cda3cbee3de705567be096fc70f98f9883f8d5841c

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 32e922a3ccf61af807affb6adf3d836f2b7d9360f67780cc6da7c6f57f102531
MD5 126a5dcafd419be4b6dbbadc192337be
BLAKE2b-256 cde4d33f314ede72647a182b85ee684a5e0770034e7211c3baa41d8216199abb

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f6ddbda5888024e248044a71a47d4f8b2afc72a20ab641b0c5f241d72b64878c
MD5 c5ed2269ee1157664499b19964f0e1c8
BLAKE2b-256 125c33bb6eb305190e97be7f7ec7a88d5cbad242d454042775acf10cc70eeb54

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a40139b7da22df40a3c19a49e5c39e2e29a07411c7e5b3929c8b3d55c31f940
MD5 8ccfafe2739695699948cea6ac5c36ef
BLAKE2b-256 00e8c3027a9c77db98ff0822e8bb6f875bb5e72f95f7922ab0609b48ab467e48

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 120021b06fbae740ec86314846a3e653d3cba396a05be7028274e2128ee093ee
MD5 c9826c65999ee8ba988f08b513d795da
BLAKE2b-256 6ed3ead824c5b67277eaa7b4b2d02bbd4150fb0301006907e663a75c79a131a0

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3a3d5a2ca98039f6c2b225c9eaf143a56447136c2c758f621fdd0241a033f209
MD5 058068bfce91f2ca57ae6b4ef3f2f9bd
BLAKE2b-256 63d6c75b35c9bcd271709800d541fc42834dfe54c602c989ccc33f9193f7e0f3

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6296104c0356029bcb720ba40879beccbb7a93dad003c6b0e800dfb90b705c2b
MD5 0582281c3f45a0bfc1068349fd028239
BLAKE2b-256 bed595962fff4eb476810cd98b51fda2afa4a3a0e5d3b7b647dcf29eb47d6d1f

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3fd115d30c23d74914743c1c9847adeabec6357db0610b3f7f27a0d0ff586c73
MD5 3342f1bc2054875dae2ab9f18e3159ca
BLAKE2b-256 3c930ff4d217623e99de8d72e8a1d53edfea08a59060e8efd26cc1f5da0118cb

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e00bd8cedf04b852977b2515ba68f95ba427ac50d65149671b14d61eed6603c1
MD5 50236e3924e0c4a2e54023b2e5cab745
BLAKE2b-256 ed6c642d9a2ea542ba19114ee85d2f4f82547d80ae3027df3bc2e509c5d9bed0

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e2da5ac926cb14ecb8d03b0ce9e4ff2777efb7596c726760f784f84484354c25
MD5 81139d0bebac7d5c2333d4925728e2ca
BLAKE2b-256 a3de5ee1d4b81ce8c34d19f370a663204ec46838abb004fb0bb4ef08b1de055f

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 eb5d9829e9a2dc0509cf8bf3a00d378c7b137429580ece0ece1d85c70e54f282
MD5 689766838c7f88362d7ba827eaa4138b
BLAKE2b-256 0ecd3421e89f67cdfca7f5c0977701b6b6b3ce5ed47766acff9b6bc8095fdc9a

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 06d99160427e5eb30db25dce1d8388211821fe2b929e78605a83036fdbddf356
MD5 2045bd03ed7bc354cde1eaafc6e9e127
BLAKE2b-256 1775f279160314fc07e3ef882bcca674f6f19eb1b5acff00e801facad3227452

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2ae7993c8785063bd8111b175b71ab4ae54e9686a10fed815e08d155001e76cb
MD5 4e9ce2fde9850f69761a2a66f54b3f99
BLAKE2b-256 0f1dbd0cede53a6c998c0f5823fa319bdb46c7c954cfa67407c5b3191df92166

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a44da1ab11230e097f13a81bc24f8f771ec54d3260f645067bf12a413eda7957
MD5 4b91a21b30e6f82edc0f18eb1ab2a6d4
BLAKE2b-256 8b8215768e56d853d33e33f6138e1643f107c47c537bb7caffbe4df5165c6173

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4e1607cfd2b14e0dee3bf322e66a252a0a0113070be09d6b30f015db352753eb
MD5 53fdc427c5bb5cb88ab7dbf2ffffe1d9
BLAKE2b-256 1282652db5fb7150aaa3f718221cc911ac55d5221998ff311864dde1755af930

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8bb7467ef4d4403fa9c79d9b3dfb44c77ad6834992b848c5f84f5b8b6c5ea5b1
MD5 d92b68709fcf229ce4a544db186c725d
BLAKE2b-256 d1947e7d72fcd4e0c34419b5d85fedbd96b7339c43c1153b0468c60ee429b464

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 034987a5db49d1e604fc1197397618a5e163f1b1eb249f18058a7c3a2c9cf2eb
MD5 ab046e5562004a39bcbb32f529bf3680
BLAKE2b-256 c491381ed1d1311ef7c34f599b1e342e667e0d6b0cf77626d71c6f5c8f1ae1dd

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 aa3506440fa170483589c43b41416589b93a00970600451d39c7271d2e9a9a3d
MD5 5b44fb211723fb42b64b2ca25934bdc4
BLAKE2b-256 3b8129c375425be5bbc98f56009b7033fe0d36a9ab945e7c033ac4576056c3dd

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 796d76ae113b8b92a8ff7b8888393cb5045385ef56869b644467d8b8c1ad70b9
MD5 0e0afaf82f114a8c06cecddcfb3a4e2f
BLAKE2b-256 882893a6329a87107ce1c99bca0fb164d597b8dfce094478c2363c02f11f9795

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a7ce60c0b7e8c254a1058a2579156bd4b7f6fb0a317cd968fb1ac1aadf7ad902
MD5 236768c892779b001443d10694e60db5
BLAKE2b-256 18b8aa18b8ba6562518125a71f076509a8953890ab88a32de357afed7657d46b

See more details on using hashes here.

File details

Details for the file discretize-0.11.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for discretize-0.11.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f65f9cb5714993e92d59ad6b88e056aa9b2b5fe0df8b7fb4bfafb4d9dcc0bfd8
MD5 660bd7d0963faa436adbe3942704a737
BLAKE2b-256 ffe5e38625594b6956ad946cc2b9f1f07be2562a1d88ecbce586e2569196fe25

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page