Skip to main content

Discretization tools for finite volume and inverse problems

Project description

Latest PyPI version MIT license Travis CI build status Coverage status codacy status https://zenodo.org/badge/DOI/10.5281/zenodo.596411.svg https://img.shields.io/badge/Slack-simpeg-4B0082.svg?logo=slack https://img.shields.io/badge/Google%20group-simpeg-da5247.svg

discretize - A python package for finite volume discretization.

The vision is to create a package for finite volume simulation with a focus on large scale inverse problems. This package has the following features:

  • modular with respect to the spacial discretization

  • built with the inverse problem in mind

  • supports 1D, 2D and 3D problems

  • access to sparse matrix operators

  • access to derivatives to mesh variables

https://raw.githubusercontent.com/simpeg/figures/master/finitevolume/cell-anatomy-tensor.png

Currently, discretize supports:

  • Tensor Meshes (1D, 2D and 3D)

  • Cylindrically Symmetric Meshes

  • QuadTree and OcTree Meshes (2D and 3D)

  • Logically Rectangular Meshes (2D and 3D)

Installing

discretize is on pypi

pip install discretize

To install from source

git clone https://github.com/simpeg/discretize.git
python setup.py install

Citing discretize

Please cite the SimPEG paper when using discretize in your work:

Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences.

BibTex:

@article{cockett2015simpeg,
  title={SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications},
  author={Cockett, Rowan and Kang, Seogi and Heagy, Lindsey J and Pidlisecky, Adam and Oldenburg, Douglas W},
  journal={Computers \& Geosciences},
  year={2015},
  publisher={Elsevier}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

discretize-0.4.0.tar.gz (552.7 kB view details)

Uploaded Source

Built Distributions

discretize-0.4.0-cp36-cp36m-win_amd64.whl (496.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

discretize-0.4.0-cp36-cp36m-win32.whl (395.7 kB view details)

Uploaded CPython 3.6m Windows x86

discretize-0.4.0-cp35-cp35m-win_amd64.whl (474.1 kB view details)

Uploaded CPython 3.5m Windows x86-64

discretize-0.4.0-cp35-cp35m-win32.whl (382.2 kB view details)

Uploaded CPython 3.5m Windows x86

discretize-0.4.0-cp27-cp27m-win_amd64.whl (507.0 kB view details)

Uploaded CPython 2.7m Windows x86-64

discretize-0.4.0-cp27-cp27m-win32.whl (403.6 kB view details)

Uploaded CPython 2.7m Windows x86

File details

Details for the file discretize-0.4.0.tar.gz.

File metadata

  • Download URL: discretize-0.4.0.tar.gz
  • Upload date:
  • Size: 552.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.15

File hashes

Hashes for discretize-0.4.0.tar.gz
Algorithm Hash digest
SHA256 67d3fca741cda7fe51df1d303916599114622d76f462d2b23c89f30d5141f469
MD5 eed5e0264eddab51185a072221ca59cb
BLAKE2b-256 bab7263b89416c3b921bbfbcb1fc2051733667de950daf6060315ee5c914bcb6

See more details on using hashes here.

File details

Details for the file discretize-0.4.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 496.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.5

File hashes

Hashes for discretize-0.4.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 06bdf7094d896f5fc4bf2c68a4d71dd5a5257b537c16b941bf5cf1d55d29c431
MD5 7a6ef9debf5292d79b0257dd13591b06
BLAKE2b-256 482d194624e1aee979288c009208c4c6cd7a28cc984b9ca044656054fabf50e2

See more details on using hashes here.

File details

Details for the file discretize-0.4.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: discretize-0.4.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 395.7 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.5

File hashes

Hashes for discretize-0.4.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 f0d0fe553991f48192c35d0de6d688c8ef26e1302352073cd178cc6a3ff71958
MD5 06950cc8fd07807231d584e46753bfcd
BLAKE2b-256 3ae6dd50106e892ee8e258a5fa99f1bec5e1774d22a29e3d73b5e99b1b89d833

See more details on using hashes here.

File details

Details for the file discretize-0.4.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 474.1 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.14.2 setuptools/27.2.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.2

File hashes

Hashes for discretize-0.4.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 9833471c3580584952fdce5c58477b2398782bfe1a49e6b277cf8df95bba99ec
MD5 ae66f42901218fc0729ed250e84ae93c
BLAKE2b-256 2e0611da90df233757b77c6a213e14bc102f0074661e1ecc0f5c112a52f20654

See more details on using hashes here.

File details

Details for the file discretize-0.4.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: discretize-0.4.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 382.2 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.14.2 setuptools/27.2.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.2

File hashes

Hashes for discretize-0.4.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 1f2b28a66f0116337b00e7cc1ece1f2d0cf450b594114f4734efd2f1d97d89d0
MD5 828982c894a8694d1864b4951b132e8b
BLAKE2b-256 b5db811544af379cce87027ff4a92b86a5c4ecd8f3f0cdbe27f8ca8f1923187d

See more details on using hashes here.

File details

Details for the file discretize-0.4.0-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: discretize-0.4.0-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 507.0 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.15

File hashes

Hashes for discretize-0.4.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 d6245a4e09805fe76d9f63c86ad370c62eacb44b412f1305997fab7128734d97
MD5 30f04483120f7bf83000e90ee7352236
BLAKE2b-256 bf90bed61f5409cbadc2966788b5dcb9934e1c3b09707f499858e782d7d1fb93

See more details on using hashes here.

File details

Details for the file discretize-0.4.0-cp27-cp27m-win32.whl.

File metadata

  • Download URL: discretize-0.4.0-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 403.6 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.15

File hashes

Hashes for discretize-0.4.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 780b0b11615c594cc77e8538e1fcd62ab6d7619054edbd529f7109c280f33b1b
MD5 194e0614c2986232f97e0236c3f1ed95
BLAKE2b-256 821f1379021570ce1c4d1a11152a190177accf25219d136f3885898e7995c61a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page