Skip to main content

smart and convenient dict flatten library for complex container nested with dict and list

Project description

1. Introduction

- A smart and convenience single function for extracting container value consisting of list and dict

- Query a container with a complex structure, mainly generated from json, and flatten it into a dict with a single structure.

- Get freedom from code that indexes complex json data one by one and writes for loops like this below...

# extracting from json loads data..

sample_from_json = json.loads('sample.json')

count = sample_from_json['count']
data_list = sample_from_json.get('data_list')

for cityinfo in data_list:
    for key, value in cityinfo.items():
        if key == 'city':
            city_name = value['names']['en']
        if key == 'subdivisions':
            subdiv = []
            for subsubdivision in value:
                sv = subsubdivision['names']['en']
                subdiv.append(sv)
                ...
                ...
            ...
        ...
        ...
    ...
    ...
    OMG...
    ...
    ....

2. Installation and Usage

  • Made in Python 3.8 or later
pip install diselect
from diselect import diselect

# example
# list of dict in dict in list in dict in list of dict in....
sample_from_json = {
    'count': 1,
    'date': '2022-5-31',
    'data_list': [
        {
            "city": {
                "names": {
                    "en": "Songpa-gu"
                }
            },
            "continent": {
                "code": "AS",
                "names": {"pt-BR": "Ásia", "de": "Asien", "en": "Asia",}
            },
            "country": {
                "iso_code": "KR", 
                "names": {
                    "de": "Südkorea",
                    "en": "South Korea",
                }
            },
            "location": {"latitude": 37.5013, "longitude": 127.1188, "time_zone": "Asia/Seoul"},

            # multiple childerns of list
            "subdivisions": [
                {
                    "iso_code": "11",
                    "names": {"zh-CN": "首尔特别市", "en": "Seoul", "ja": "ソウル特別市"}
                },
                {
                    "iso_code": "12",
                    "names": {"en": "Hangang"}
                }
            ],
            
        },
        {
            "city": {
                "names": {
                    "en": "Songpa-gu2"
                }
            },
            "continent": {
                "code": "AS2",
                "names": {"pt-BR": "Ásia2", "de": "Asien", "en": "Asia2",}
            },
            "country": {
                "iso_code": "KR2", 
                "names": {
                    "de": "Südkorea2",
                    "en": "South Korea2",
                }
            },
            "location": {"latitude": 37.5013, "longitude": 127.1188, "time_zone": "Asia/Seoul2"},

            # multiple childerns of list
            "subdivisions": [
                {
                    "iso_code": "112",
                    "names": {"zh-CN": "首尔特别市", "en": "Seoul2", "ja": "ソウル特別市"}
                },
                {
                    "iso_code": "122",
                    "names": {"en": "Hangang2"}
                }
            ],
            
        },
    ]
}
# Useage 1) Specify only the column name
# When taking the highest values in container ​​without the risk of duplication

query_only_key = ['count', 'date'] # key name to column
for r in diselect(sample_from_json, query_only_key):
    print(r)

# results {'count': 1, 'date': '2022-5-31'}
# Useage 2) Extract nested values
# parent paths tuple keys of target 'terminal' value
# If there are few parental generations, duplicate matching may occur.
# Exception when duplicate occurs

query_deep_path = [('city', 'names', 'en'), ('country', 'names', 'en')] # en is key of terminal value
for r in diselect(sample_from_json, query_deep_path):
    print(r)

# results 
# {('city', 'names', 'en'): 'Songpa-gu', ('country', 'names', 'en'): 'South Korea'}
# {('city', 'names', 'en'): 'Songpa-gu2', ('country', 'names', 'en'): 'South Korea2'}
# Useage 3) Aliasing query to column name
# Change the query to an usable column name

query_aliases = {
    ('city', 'names', 'en'): 'city_name',
    ('country', 'names', 'en'): 'country_name',
    ('subdivisions', 'names', 'en'): 'subdivision_name'
}
# or
query_aliases = [
    {('city', 'names', 'en'): 'city_name'},
    {('country', 'names', 'en'): 'country_name'},
    {('subdivisions', 'names', 'en'): 'subdivision_names'}
]

for r in diselect(sample_from_json, query_aliases):
    print(r)

# results:
# {'city_name': 'Songpa-gu', 'country_name': 'South Korea', 'subdivision_names': ['Seoul', 'Hangang']}
# {'city_name': 'Songpa-gu2', 'country_name': 'South Korea2', 'subdivision_names': ['Seoul2', 'Hangang2']}
# multiple children values of subdivision_names has coaleased to list ['Seoul', 'Hangang']
# Useage 4) join listed children values
# pass tuple value of aliase and function

query_aliases_and_join_children = {
    ('city', 'names', 'en'): 'city_name',
    ('country', 'names', 'en'): 'country_name',
    ('subdivisions', 'names', 'en'): ('subdivision_names', ','.join), # alias, join function
}

for r in diselect(sample_from_json, query_aliases_and_join_children):
    print(r)

# results
# {'city_name': 'Songpa-gu', 'country_name': 'South Korea', 'subdivision_names': 'Seoul,Hangang'}
# {'city_name': 'Songpa-gu2', 'country_name': 'South Korea2', 'subdivision_names': 'Seoul2,Hangang2'}
# Soule, Hangang has joined with sep ','
query_aliases_and_join_children = {
    ('city', 'names', 'en'): 'city_name',
    ('country', 'names', 'en'): 'country_name',
    ('subdivisions', 'names', 'en'): [
        'subdivision_names',
        ','.join, str.upper # alias, chaining function
    ]
}

for r in diselect(sample_from_json, query_aliases_and_join_children):
    print(r)
# results
# {'city_name': 'Songpa-gu', 'country_name': 'South Korea', 'subdivision_names': 'SEOUL,HANGANG'}
# {'city_name': 'Songpa-gu2', 'country_name': 'South Korea2', 'subdivision_names': 'SEOUL2,HANGANG2'}
# Useage 5) merge muliple select
 
query = {
    (('continent', 'names', 'en'), ('country', 'names', 'en'), ('city', 'names', 'en')):[
        'address',
        '/' # if str, be a shorcut of join function
    ],
    (('latitude',), ('longitude',)): [
        'coordinate'
    ]
}
for r in diselect(sample_from_json, query):
    print(r)

# {'address': 'Asia/South Korea/Songpa-gu', 'coordinate': [37.5013, 127.1188]}
# {'address': 'Asia2/South Korea2/Songpa-gu2', 'coordinate': [37.5013, 127.1188]}

# appling functions to coordinate...
query = {
    (('continent', 'names', 'en'), ('country', 'names', 'en'), ('city', 'names', 'en')):[ #tuple of multiple paths,
        'address', '/'
    ],
    (('latitude',), ('longitude',)): [ 
        'coordinate',
        str,    # convert individual float type elements to str for join
        ','     
    ]
}
for r in diselect(sample_from_json, query):
    print(r)

# {'address': 'Asia/South Korea/Songpa-gu', 'coordinate': '37.5013,127.1188'}
# {'address': 'Asia2/South Korea2/Songpa-gu2', 'coordinate': '37.5013,127.1188'}
# 4) Summary
query = {
    ('city', 'names', 'en'): 'city_name',
    ('continent', 'code'): 'continent_code',
    ('continent', 'names', 'en'): 'continent_name',
    ('country', 'iso_code'): 'country_code',
    ('country', 'names', 'en'): 'country_name',
    ('location', 'time_zone'): 'timezone',
    (('latitude',), ('longitude',)): [
        'coordinate',
        str, ','
    ],
    ('subdivisions', 'names', 'en'): [
        'subdivision_name',
        ',', str.upper
    ]
}

for r in diselect(container=sample_from_json, query=query):
    print(r)

# {'city_name': 'Songpa-gu', 'continent_code': 'AS', 'continent_name': 'Asia', 'country_code': 'KR', 'country_name': 'South Korea', 'timezone': 'Asia/Seoul', 'coordinate': '37.5013,127.1188', 'subdivision_name': 'SEOUL,HANGANG'}
# {'city_name': 'Songpa-gu2', 'continent_code': 'AS2', 'continent_name': 'Asia2', 'country_code': 'KR2', 'country_name': 'South Korea2', 'timezone': 'Asia/Seoul2', 'coordinate': '37.5013,127.1188', 'subdivision_name': 'SEOUL2,HANGANG2'}

3. Arguments

1. container

> nested with dict and list complex data

2. query

query1 = {
    key1, key2,
    {(key3, key2): alias},
    {(key4, key5): (alias2, apply)},
}
query2 = [
    'column1', 'column2',
    {
        ('path1', 'path2'): 'alias1',
        ('patt1', 'path2', 'path3'): ('alias2', dateutil.parser.parse),
    },
    'column4'
]
  • non-overlapping 'minimum' path of value item (need not be fullpath)
  • parents path lists key of target 'terminal' value (target value must be scalar value, like str, int...)
  • More detail is better to avoid duplication (...great-grandparent, grandparent, parent)
  • You can mix dict and tuple
  • The results column order of the output matches the order of the query
  • alias: column name representing the query
  • apply: function to be applied to value

3. caution

  • If there is no query matching the key path of the container, a warning is output and it does not appear into the result column.
  • If the matching of the query is duplicated, an exception is raised and a more detailed query is required.
  • Consider the data structure of the container. Suggested queries are aggregated by matching top-level keys of matched with query.
# date and count in the presented example data are single entities as top-level keys.
  # 'count': 1,
  # 'date': '2022-5-31',
  # 'data_list': [ ...
# but data_list is multiple row value
# Querying data from both tendencies at the same time leads to unpredictable behavior.

greedy_query = [
    # query for top level single context value
    'count', 'date', 
    # query for row values
    {
        ('city', 'names', 'en'): 'city_name',
        ('continent', 'code'): 'continent_code',
        ('continent', 'names', 'en'): 'continent_name',
        ('country', 'iso_code'): 'country_code',
        ('country', 'names', 'en'): 'country_name',
        ('location', 'time_zone'): 'timezone',
        ('subdivisions', 'names', 'en'): ('subdivision_name', ','), 
    }
]

for r in diselect(sample_from_json, greedy_query):
    print(r)

# results
# {'count': 1, 'date': '2022-5-31', 'city_name': ['Songpa-gu', 'Songpa-gu2'], 'continent_code': ['AS', 'AS2'], 'continent_name': ['Asia', 'Asia2'], 'country_code': ['KR', 'KR2'], 'country_name': ['South Korea', 'South Korea2'], 'timezone': ['Asia/Seoul', 'Asia/Seoul2'], 'subdivision_name': 'Seoul,Hangang,Seoul2,Hangang2'}

# The data is organized vertically with the top keys count and date. Maybe this is what you want.
# This can be used as a trick to get the column dataset


## Tip. separate query by structure for get two of them both
query_context = ['count', 'date']

query_list = {
    ('city', 'names', 'en'): 'city_name',
    ('continent', 'code'): 'continent_code',
    ('continent', 'names', 'en'): 'continent_name',
    ('country', 'iso_code'): 'country_code',
    ('country', 'names', 'en'): 'country_name',
    ('location', 'time_zone'): 'timezone',
    ('subdivisions', 'names', 'en'): ('subdivision_name', ','), 
}



[context_data] = list(diselect(sample_from_json, query_context)) # may one
count = context_data['count']
date = context_data['date']

# or may be simple and better just direct indexing when values are easy to access
count = sample_from_json['count']
date = sample_from_json['date']

data_list = list(diselect(sample_from_json, query_list)) # many

4. More Useages

1. typing values

- value typing via apply function
import dateutil

data = [
    {
        'place_id': 142213,
        'visit_count': '5',
        'visit_date': '2022/2/21',
        'rating': '2.5',
    },
    {
        'place_id': 154321,
        'visit_count': '12',
        'visit_date': '2022.3.7.',
        'rating': '4.5',
    },
]

parsed = diselect(data,
{
    'place_id': ('place_id', str),
    'visit_count': ('visit_count', int),
    'rating': ('point', float),
    'visit_date': ('visit_count', dateutil.parser.parse),
})
for row in parsed:
    print(row)
# results
# {'place_id': '142213', 'visit_count': datetime.datetime(2022, 2, 21, 0, 0), 'point': 2.5}
# {'place_id': '154321', 'visit_count': datetime.datetime(2022, 3, 7, 0, 0), 'point': 4.5}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

diselect-1.0.12.tar.gz (13.0 kB view details)

Uploaded Source

File details

Details for the file diselect-1.0.12.tar.gz.

File metadata

  • Download URL: diselect-1.0.12.tar.gz
  • Upload date:
  • Size: 13.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for diselect-1.0.12.tar.gz
Algorithm Hash digest
SHA256 654813bd9b9188437f361172c4912386b32fe098ceecb7a99a852483c7cc1351
MD5 b845bf7078b7c2a53162a1c9123df5cf
BLAKE2b-256 a085035c1403d7395ce7a45463ebb4b18277552efe4a91ab705bde6cd1c73a64

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page