Skip to main content

No project description provided

Project description

Joint Disfluency Detection and Constituency Parsing

A joint disfluency detection and constituency parsing model for transcribed speech based on Neural Constituency Parsing of Speech Transcripts from NAACL 2019, with additional changes (e.g. self-training and ensembling) as described in Improving Disfluency Detection by Self-Training a Self-Attentive Model from ACL 2020.

This repository updated the original repository to focus on inferencing using the pretrained swbd_fisher_bert_Edev.0.9078.pt model.

Installation

$ pip install disfluency-constituency-parser

Usage

$ wget https://github.com/pariajm/joint-disfluency-detector-and-parser/releases/download/naacl2019/swbd_fisher_bert_Edev.0.9078.pt
$ wget https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt
$ wget https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz
from dc_parser import DC_Model
model = DC_Model(model_path = "/path/to/swbd_fisher_bert_Edev.0.9078.pt",
                bert_model_path = "/path/to/bert-base-uncased.tar.gz",
                bert_vocab_path = "/path/to/bert-base-uncased-vocab.txt",)
model.parse(["Today is a very good day!"])

Citation

If you use this model, please cite the following papers:

@inproceedings{jamshid-lou-2019-neural,
    title = "Neural Constituency Parsing of Speech Transcripts",
    author = "Jamshid Lou, Paria and Wang, Yufei and Johnson, Mark",
    booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
    month = "June",
    year = "2019",
    address = "Minneapolis, Minnesota",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/N19-1282",
    doi = "10.18653/v1/N19-1282",
    pages = "2756--2765"
}
@inproceedings{jamshid-lou-2020-improving,
    title = "Improving Disfluency Detection by Self-Training a Self-Attentive Model",
    author = "Jamshid Lou, Paria and Johnson, Mark",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = "jul",
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-main.346",
    pages = "3754--3763"
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file disfluency_constituency_parser-0.0.7-py3-none-any.whl.

File metadata

File hashes

Hashes for disfluency_constituency_parser-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 90f9e8b14bd7834b1de8b7b559fac2945efd9a42e4c039c2f3d9e13b57defce6
MD5 dfbb03c2e0cdce77a604a62aefe4a926
BLAKE2b-256 f6d2a23eeba3c389c00e5f0312e93621a4218667fbc0c2f1d6dd9cd28c636c6e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page