Massively parallel diffusion MR simulator
Project description
Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of data acquisition and analysis methods. The data is generated by Monte Carlo random walk simulations that run massively parallel on Nvidia CUDA-capable GPUs. If you use Disimpy in work that leads to a scientific publication, please cite [1], where the details about signal generation can also be found.
Requirements and installation
Follow the installation instructions.
Usage example
Read the tutorial to learn how to use Disimpy.
Validation
Disimpy’s functionality has been validated by comparing its results to
analytical solutions and to results from other simulators (e.g., Camino and MISST), and by automated
testing (disimpy.tests
). Examples of simulations used for validation
are provided here. However, Disimpy
is research software and some bugs undoubtedly remain. If you find any of them
or encounter unexpected behaviour, please open an issue on GitHub.
Contribute
If you want to contribute to the development of Disimpy, start by reading the contributing guidelines.
Support
If you have questions or need help, open an issue on Github.
References
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.