Skip to main content

DiskANN Python extension module

Project description

diskannpy

DiskANN Paper DiskANN Paper DiskANN Paper DiskANN Main PyPI version Downloads shield License: MIT

Installation

Packages published to PyPI will always be built using the latest numpy major.minor release (at this time, 1.25).

Conda distributions for versions 1.19-1.25 will be completed as a future effort. In the meantime, feel free to clone this repository and build it yourself.

Local Build Instructions

Please see the Project README for system dependencies and requirements.

After ensuring you've followed the directions to build the project library and executables, you will be ready to also build diskannpy with these additional instructions.

Changing Numpy Version

In the root folder of DiskANN, there is a file pyproject.toml. You will need to edit the version of numpy in both the [build-system.requires] section, as well as the [project.dependencies] section. The version numbers must match.

Linux

python3.11 -m venv venv # versions from python3.9 and up should work
source venv/bin/activate
pip install build
python -m build

Windows

py -3.11 -m venv venv # versions from python3.9 and up should work
venv\Scripts\Activate.ps1
pip install build
python -m build

The built wheel will be placed in the dist directory in your DiskANN root. Install it using pip install dist/<wheel name>.whl

Citations

Please cite this software in your work as:

@misc{diskann-github,
   author = {Simhadri, Harsha Vardhan and Krishnaswamy, Ravishankar and Srinivasa, Gopal and Subramanya, Suhas Jayaram and Antonijevic, Andrija and Pryce, Dax and Kaczynski, David and Williams, Shane and Gollapudi, Siddarth and Sivashankar, Varun and Karia, Neel and Singh, Aditi and Jaiswal, Shikhar and Mahapatro, Neelam and Adams, Philip and Tower, Bryan and Patel, Yash}},
   title = {{DiskANN: Graph-structured Indices for Scalable, Fast, Fresh and Filtered Approximate Nearest Neighbor Search}},
   url = {https://github.com/Microsoft/DiskANN},
   version = {0.6.1},
   year = {2023}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

diskannpy-0.7.0-cp311-cp311-win_amd64.whl (4.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

diskannpy-0.7.0-cp311-cp311-manylinux_2_28_x86_64.whl (91.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

diskannpy-0.7.0-cp310-cp310-win_amd64.whl (4.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

diskannpy-0.7.0-cp310-cp310-manylinux_2_28_x86_64.whl (91.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

diskannpy-0.7.0-cp39-cp39-win_amd64.whl (4.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

diskannpy-0.7.0-cp39-cp39-manylinux_2_28_x86_64.whl (91.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

File details

Details for the file diskannpy-0.7.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for diskannpy-0.7.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6cae650477ae2da66092a717cfe00d6dce6e8244fbfbb8344cd97588f73590f6
MD5 287498278b69e592379fe18603f852e7
BLAKE2b-256 9ce4dbb6d6390d1567a45276f195b9bead4a5e9bad184fb634b533969d48116f

See more details on using hashes here.

File details

Details for the file diskannpy-0.7.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for diskannpy-0.7.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cf9af7b23453e3c20551cfc7949324d1ee309bd5a8f6aee20853084299ad837d
MD5 2b8f6372f2fcd445e5e22033fdcb3d58
BLAKE2b-256 faddb7641e397cf84eeca7a528764942133c0c34a0a122406e9f069028c20353

See more details on using hashes here.

File details

Details for the file diskannpy-0.7.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for diskannpy-0.7.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 02093b2d717a8022be603ad5da0113de32114673cbc3e901ed7de3a6bb20d4cf
MD5 5f0859ef855bc4b4e9e1e901b6219397
BLAKE2b-256 5285ee02634e96cceaabc87e7aacdb0a1bb91001b27b672dcd1e25fe669c91d4

See more details on using hashes here.

File details

Details for the file diskannpy-0.7.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for diskannpy-0.7.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4aca55b1a8ad8d7dea9d8ef0bccbf91ed376fd5f6320069b6b019f11753c3166
MD5 529e9551e6d5b39eacbea00a7da6cba0
BLAKE2b-256 0359cb37b97522d377e4e1a1a137fdc9cf30b7580efd85542b5c8a9d1ca7b725

See more details on using hashes here.

File details

Details for the file diskannpy-0.7.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: diskannpy-0.7.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for diskannpy-0.7.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3e39dacbbd56301afefdf7c29179322c26a99f833de04594ffee4684740624e3
MD5 c71feed4ab8f4806dc8f69b165ef0140
BLAKE2b-256 04f6161627c465a8672d4146979694688e908a9f08503aeb276113e2cad803d5

See more details on using hashes here.

File details

Details for the file diskannpy-0.7.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for diskannpy-0.7.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4bfc87c45b05a05ce10e93648b0e4561089d013ca9c858b5bc4e91637dff130b
MD5 da45c3da8642db17359cf297510e0762
BLAKE2b-256 1fd3ff3132f85bcf4d5b9fbb66c4d041cc5131d5da0dd2ef01507b12925b7368

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page