Skip to main content

Computing disparity maps

Project description

# default_exp disparity

Disparity

# export
import numba
import numpy as np

from camera_calib.utils import *
import re
from pathlib import Path
import matplotlib.pyplot as plt

import torch

Utilities

def _parse_name(name_img):
    match = re.match(r'''SERIAL_(?P<serial>.*)_
                         DATETIME_(?P<date>.*)_
                         CAM_(?P<cam>.*)_
                         FRAMEID_(?P<frameid>.*)_
                         COUNTER_(?P<counter>.*).png''', 
                     name_img, 
                     re.VERBOSE)
    return match.groupdict()
def _get_imgs(dir_imgs):
    imgs = []
    for file_img in dir_imgs.glob('*.png'):
        dict_group = _parse_name(file_img.name)
        img = api.File16bitImg(file_img)
        img.idx_cam = int(dict_group['cam'])-1
        img.idx_cb  = int(dict_group['counter'])-1
        imgs.append(img)
    return imgs
def _print_imgs(imgs): 
    for img in imgs: print(f'{img.name} - cam: {img.idx_cam} - cb: {img.idx_cb}')

Compute disparity map

First, we need to calibrate, then rectify, and then we can compute disparity maps.

Calibrate

import camera_calib.api as api
imgs = _get_imgs(Path('data/calib'))
_print_imgs(imgs)
SERIAL_19061245_DATETIME_2020-08-16-16:58:39-927381_CAM_1_FRAMEID_0_COUNTER_1 - cam: 0 - cb: 0
SERIAL_16276941_DATETIME_2020-08-16-16:58:53-756240_CAM_2_FRAMEID_0_COUNTER_2 - cam: 1 - cb: 1
SERIAL_16276941_DATETIME_2020-08-16-16:58:39-927424_CAM_2_FRAMEID_0_COUNTER_1 - cam: 1 - cb: 0
SERIAL_16276941_DATETIME_2020-08-16-16:59:05-367688_CAM_2_FRAMEID_0_COUNTER_3 - cam: 1 - cb: 2
SERIAL_19061245_DATETIME_2020-08-16-16:59:59-403047_CAM_1_FRAMEID_0_COUNTER_4 - cam: 0 - cb: 3
SERIAL_16276941_DATETIME_2020-08-16-17:00:14-283298_CAM_2_FRAMEID_0_COUNTER_5 - cam: 1 - cb: 4
SERIAL_19061245_DATETIME_2020-08-16-16:58:53-756222_CAM_1_FRAMEID_0_COUNTER_2 - cam: 0 - cb: 1
SERIAL_16276941_DATETIME_2020-08-16-16:59:59-403092_CAM_2_FRAMEID_0_COUNTER_4 - cam: 1 - cb: 3
SERIAL_19061245_DATETIME_2020-08-16-16:59:05-367645_CAM_1_FRAMEID_0_COUNTER_3 - cam: 0 - cb: 2
SERIAL_19061245_DATETIME_2020-08-16-17:00:14-283252_CAM_1_FRAMEID_0_COUNTER_5 - cam: 0 - cb: 4
h_cb = 50.8
w_cb = 50.8
h_f = 42.672
w_f = 42.672
num_c_h = 16
num_c_w = 16
spacing_c = 2.032
cb_geom = api.CbGeom(h_cb, w_cb,
                     api.CpCSRGrid(num_c_h, num_c_w, spacing_c),
                     api.FmCFPGrid(h_f, w_f))
file_model = Path('models/dot_vision_checker.pth')
detector = api.DotVisionCheckerDLDetector(file_model)
refiner = api.OpenCVCheckerRefiner(hw_min=5, hw_max=15, cutoff_it=20, cutoff_norm=1e-3)
calib = api.multi_calib(imgs, cb_geom, detector, refiner)
Refining control points for: SERIAL_19061245_DATETIME_2020-08-16-16:58:39-927381_CAM_1_FRAMEID_0_COUNTER_1...
Refining control points for: SERIAL_19061245_DATETIME_2020-08-16-16:59:59-403047_CAM_1_FRAMEID_0_COUNTER_4...
Refining control points for: SERIAL_19061245_DATETIME_2020-08-16-16:58:53-756222_CAM_1_FRAMEID_0_COUNTER_2...
Refining control points for: SERIAL_19061245_DATETIME_2020-08-16-16:59:05-367645_CAM_1_FRAMEID_0_COUNTER_3...
Refining control points for: SERIAL_19061245_DATETIME_2020-08-16-17:00:14-283252_CAM_1_FRAMEID_0_COUNTER_5...
Refining single parameters...
 - Iteration: 000 - Norm:    0.05166 - Loss:   40.43536
 - Iteration: 001 - Norm:    0.05871 - Loss:   27.05900
 - Iteration: 002 - Norm:    0.10641 - Loss:   16.14479
 - Iteration: 003 - Norm:    0.52404 - Loss:    9.86104
 - Iteration: 004 - Norm:    0.70472 - Loss:    5.50705
 - Iteration: 005 - Norm:    0.15078 - Loss:    5.39712
 - Iteration: 006 - Norm:    0.02470 - Loss:    5.38315
 - Iteration: 007 - Norm:    0.01638 - Loss:    5.37218
 - Iteration: 008 - Norm:    0.00468 - Loss:    5.37189
 - Iteration: 009 - Norm:    0.13333 - Loss:    5.36454
 - Iteration: 010 - Norm:    0.00423 - Loss:    5.36439
 - Iteration: 011 - Norm:   28.76676 - Loss:    3.86312
 - Iteration: 012 - Norm:   17.23997 - Loss:    3.17776
 - Iteration: 013 - Norm:    0.00853 - Loss:    3.17776
 - Iteration: 014 - Norm:    0.00000 - Loss:    3.17776
Refining control points for: SERIAL_16276941_DATETIME_2020-08-16-16:58:53-756240_CAM_2_FRAMEID_0_COUNTER_2...
Refining control points for: SERIAL_16276941_DATETIME_2020-08-16-16:58:39-927424_CAM_2_FRAMEID_0_COUNTER_1...
Refining control points for: SERIAL_16276941_DATETIME_2020-08-16-16:59:05-367688_CAM_2_FRAMEID_0_COUNTER_3...
Refining control points for: SERIAL_16276941_DATETIME_2020-08-16-17:00:14-283298_CAM_2_FRAMEID_0_COUNTER_5...
Refining control points for: SERIAL_16276941_DATETIME_2020-08-16-16:59:59-403092_CAM_2_FRAMEID_0_COUNTER_4...
Refining single parameters...
 - Iteration: 000 - Norm:    0.04648 - Loss:   33.60078
 - Iteration: 001 - Norm:    0.03970 - Loss:   26.93946
 - Iteration: 002 - Norm:    0.04580 - Loss:   24.62314
 - Iteration: 003 - Norm:    0.14923 - Loss:   21.53392
 - Iteration: 004 - Norm:    0.48321 - Loss:   13.00884
 - Iteration: 005 - Norm:    0.00873 - Loss:   12.83886
 - Iteration: 006 - Norm:    0.65804 - Loss:    8.40447
 - Iteration: 007 - Norm:    0.10469 - Loss:    8.11526
 - Iteration: 008 - Norm:    0.09923 - Loss:    8.02833
 - Iteration: 009 - Norm:    0.09764 - Loss:    7.97387
 - Iteration: 010 - Norm:    0.18271 - Loss:    7.92175
 - Iteration: 011 - Norm:    9.62275 - Loss:    7.45953
 - Iteration: 012 - Norm:   37.67393 - Loss:    5.66647
 - Iteration: 013 - Norm:    1.13521 - Loss:    5.66112
 - Iteration: 014 - Norm:    0.01024 - Loss:    5.66107
 - Iteration: 015 - Norm:  142.51304 - Loss:    3.52503
 - Iteration: 016 - Norm:    0.29318 - Loss:    3.52483
 - Iteration: 017 - Norm:    0.00000 - Loss:    3.52483
Refining multi parameters...
 - Iteration: 000 - Norm:    0.00633 - Loss:  365.50887
 - Iteration: 001 - Norm:    0.03670 - Loss:  251.90410
 - Iteration: 002 - Norm:    0.03891 - Loss:  191.50267
 - Iteration: 003 - Norm:    0.03330 - Loss:  169.51325
 - Iteration: 004 - Norm:    0.14800 - Loss:  115.86002
 - Iteration: 005 - Norm:    0.03182 - Loss:   99.71262
 - Iteration: 006 - Norm:    0.09812 - Loss:   78.23173
 - Iteration: 007 - Norm:    0.12045 - Loss:   50.32390
 - Iteration: 008 - Norm:    0.02356 - Loss:   45.52809
 - Iteration: 009 - Norm:    0.00880 - Loss:   44.19760
 - Iteration: 010 - Norm:    0.03753 - Loss:   40.63650
 - Iteration: 011 - Norm:    0.03345 - Loss:   37.87511
 - Iteration: 012 - Norm:    0.01658 - Loss:   36.71647
 - Iteration: 013 - Norm:    0.02828 - Loss:   34.62113
 - Iteration: 014 - Norm:    0.05827 - Loss:   30.72548
 - Iteration: 015 - Norm:    0.00558 - Loss:   30.46024
 - Iteration: 016 - Norm:    0.00377 - Loss:   30.32508
 - Iteration: 017 - Norm:    0.01700 - Loss:   29.78092
 - Iteration: 018 - Norm:    0.00733 - Loss:   29.58850
 - Iteration: 019 - Norm:    0.16740 - Loss:   25.31908
 - Iteration: 020 - Norm:    0.02405 - Loss:   24.72751
 - Iteration: 021 - Norm:    0.00133 - Loss:   24.69757
 - Iteration: 022 - Norm:    0.00339 - Loss:   24.62627
 - Iteration: 023 - Norm:    0.00355 - Loss:   24.59673
 - Iteration: 024 - Norm:    0.04353 - Loss:   24.94890
 - Iteration: 025 - Norm:    0.04560 - Loss:   24.23809
 - Iteration: 026 - Norm:    0.04802 - Loss:   24.02517
 - Iteration: 027 - Norm:    0.00035 - Loss:   24.02463
 - Iteration: 028 - Norm:    0.00095 - Loss:   24.02313
 - Iteration: 029 - Norm:    0.07848 - Loss:   23.82852
 - Iteration: 030 - Norm:    0.06296 - Loss:   23.67669
 - Iteration: 031 - Norm:    0.00122 - Loss:   23.67818
 - Iteration: 032 - Norm:    0.01764 - Loss:   23.65771
 - Iteration: 033 - Norm:    0.53306 - Loss:   23.11532
 - Iteration: 034 - Norm:    0.00389 - Loss:   23.11467
 - Iteration: 035 - Norm:    0.00026 - Loss:   23.11465
 - Iteration: 036 - Norm:    0.00855 - Loss:   23.11144
 - Iteration: 037 - Norm:    0.04346 - Loss:   23.09543
 - Iteration: 038 - Norm:    0.00329 - Loss:   23.09395
 - Iteration: 039 - Norm:    0.00014 - Loss:   23.09395
 - Iteration: 040 - Norm:    0.00550 - Loss:   23.09309
 - Iteration: 041 - Norm:    0.11960 - Loss:   23.05538
 - Iteration: 042 - Norm:    0.21922 - Loss:   22.99648
 - Iteration: 043 - Norm:    0.00130 - Loss:   22.99645
 - Iteration: 044 - Norm:    0.00077 - Loss:   22.99642
 - Iteration: 045 - Norm:    0.04483 - Loss:   22.98557
 - Iteration: 046 - Norm:    7.57304 - Loss:   21.17649
 - Iteration: 047 - Norm:   10.45625 - Loss:   18.59859
 - Iteration: 048 - Norm:    0.76570 - Loss:   18.39438
 - Iteration: 049 - Norm:    0.01591 - Loss:   18.39388
 - Iteration: 050 - Norm:    0.01743 - Loss:   18.39040
 - Iteration: 051 - Norm:    4.64610 - Loss:   17.20502
 - Iteration: 052 - Norm:    2.02334 - Loss:   16.86937
 - Iteration: 053 - Norm:    0.00002 - Loss:   16.86937
 - Iteration: 054 - Norm:    0.02372 - Loss:   16.86879
 - Iteration: 055 - Norm:    2.26827 - Loss:   16.59826
 - Iteration: 056 - Norm:   29.46264 - Loss:   13.48704
 - Iteration: 057 - Norm:    2.88659 - Loss:   13.25918
 - Iteration: 058 - Norm:    0.04408 - Loss:   13.25897
 - Iteration: 059 - Norm:    0.00140 - Loss:   13.25896
 - Iteration: 060 - Norm:    0.00002 - Loss:   13.25896
 - Iteration: 061 - Norm:    0.00000 - Loss:   13.25896
api.plot_residuals(calib);

png

api.plot_extrinsics(calib);

png

api.save(calib, 'data/calib/calib.pth')

Freeze above and just load

calib = api.load('data/calib/calib.pth')

Rectify

from image_rect import image_rect
imgs = _get_imgs(Path('data/scene1'))
_print_imgs(imgs)
SERIAL_19061245_DATETIME_2020-08-16-17:05:28-278345_CAM_1_FRAMEID_0_COUNTER_1 - cam: 0 - cb: 0
SERIAL_16276941_DATETIME_2020-08-16-17:05:28-278389_CAM_2_FRAMEID_0_COUNTER_1 - cam: 1 - cb: 0
[img1] = [img for img in imgs if img.idx_cam == 0]
[img2] = [img for img in imgs if img.idx_cam == 1]
img1.name, img2.name
('SERIAL_19061245_DATETIME_2020-08-16-17:05:28-278345_CAM_1_FRAMEID_0_COUNTER_1',
 'SERIAL_16276941_DATETIME_2020-08-16-17:05:28-278389_CAM_2_FRAMEID_0_COUNTER_1')
rect = image_rect.rectify(calib)
with torch.no_grad():
    arr1_r = image_rect.rect_img(img1, rect)
    arr2_r = image_rect.rect_img(img2, rect)
_, axs = plt.subplots(1, 2, figsize=(20,15))
axs[0].imshow(arr1_r, cmap='gray')
axs[1].imshow(arr2_r, cmap='gray')
<matplotlib.image.AxesImage at 0x7f3c7f91ad10>

png

Disparity

Do initial resize to make processing faster; also note that I'm doing the rest in numba/numpy since a lot of nested for loops are involved.

NOTE: numba does not yet support classes with inheritance yet

arr1, arr2 = [imresize(torch2np(arr), shape(arr)/4) for arr in [arr1_r, arr2_r]]
_, axs = plt.subplots(1, 2, figsize=(10,10))
for arr, ax in zip([arr1, arr2], axs): ax.imshow(arr)

png

Basic block matching

sum of absolute difference is a common loss function for disparity maps

# export
@numba.jit(nopython=True)
def SAD(arr1, arr2):
    l = 0
    for i in range(arr1.shape[0]):
        for j in range(arr2.shape[1]):
            l += abs(arr1[i,j] - arr2[i,j])
    return l

rect_loss_p will compute the loss for a single point and store the losses in a buffer

# export
@numba.jit(nopython=True)
def rect_loss_p(arr1, arr2, x, y, min_disp, max_disp, hw, loss, buf_loss):
    h_arr, w_arr = arr1.shape

    l_t, t_t, r_t, b_t = max(x-hw, 0), max(y-hw, 0), min(x+hw, w_arr-1), min(y+hw, h_arr-1)
    h_t, w_t = b_t-t_t+1, r_t-l_t+1
    for j in range(min_disp, max_disp+1):
        if (j+l_t >= 0) and (j+r_t < w_arr): # Template in bounds
            buf_loss[j-min_disp] = loss(arr1[t_t:t_t+h_t, l_t:l_t+w_t], arr2[t_t:t_t+h_t, j+l_t:j+l_t+w_t])
        else:                                # Template out of bound 
            buf_loss[j-min_disp] = np.inf        

argmin_int is the integer argument minimum; int suffix is only used to distinguish between subpixel minimum, which is used later.

# export
@numba.jit(nopython=True)
def argmin_int(arr): return np.argmin(arr)

Test out getting the loss for an example point

def _debug_rect_loss_p(x, y):
    buf_loss = np.empty(max_disp-min_disp+1)
    rect_loss_p(arr1, arr2, x, y, min_disp, max_disp, hw, loss, buf_loss)
    disp = argmin(buf_loss) + min_disp
    _, axs = plt.subplots(1, 2, figsize=(10,10))
    axs[0].imshow(arr1)
    axs[0].plot(x, y, 'rs')
    axs[1].imshow(arr2)
    axs[1].plot(x+disp, y, 'rs')
hw = 15
min_disp = -15
max_disp =  15
loss = SAD
argmin = argmin_int
_debug_rect_loss_p(x=60, y=75)

png

rect_loss_l will compute the loss for an entire line. Note that an initial disparity map guess can also be input; if this is the case, then the disparity range will be centered around this disparity value instead of zero.

# export
@numba.jit(nopython=True)
def rect_loss_l(arr1, arr2, y, r_disp, hw, loss, buf_loss, arr_disp_init=None):
    h_arr, w_arr = arr1.shape

    for i in range(w_arr):
        disp_init = 0 if arr_disp_init is None else arr_disp_init[y, i]
        min_disp, max_disp = [disp + disp_init for disp in r_disp]
        rect_loss_p(arr1, arr2, i, y, min_disp, max_disp, hw, loss, buf_loss[i])
def _debug_rect_loss_l(y):
    buf_loss = np.empty((arr1.shape[1], r_disp[1]-r_disp[0]+1))
    rect_loss_l(arr1, arr2, y, r_disp, hw, loss, buf_loss)
    _, ax = plt.subplots(1, 1, figsize=(10,10))
    ax.imshow(buf_loss.T)
    return buf_loss
r_disp = (-15, 15)
_debug_rect_loss_l(60);

png

min_path_int will compute the path from left to right of transposed loss buffer using the minimum value in each column.

# export
@numba.jit(nopython=True)
def min_path_int(arr_loss, buf_path):
    for i in range(len(arr_loss)):
        buf_path[i] = argmin_int(arr_loss[i])

rect_match_arr_min_path will compute a disparity map. It takes an input min_path function which, when given a loss buffer, will compute the best path across it; this will make more sense when we use dynamic programming. arr_disp_init is an initial guess for the disparity map; this will make more sense when we do the image pyramids.

Note that this seems to be the level where multi-threading makes sense; it's not too fine grained where overhead will slow things down and it's not too grainular such that a single thread can cause a long delay.

# export
@numba.jit(nopython=True, parallel=True)
def rect_match_arr_min_path(arr1, arr2, r_disp, hw, loss, min_path, arr_disp_init=None):
    h_arr, w_arr = arr1.shape[0], arr1.shape[1]

    arr_disp = np.empty((h_arr, w_arr))
    for i in numba.prange(h_arr):
        buf_loss = np.empty((arr1.shape[1], r_disp[1]-r_disp[0]+1))
        rect_loss_l(arr1, arr2, i, r_disp, hw, loss, buf_loss, arr_disp_init)
        min_path(buf_loss, arr_disp[i]) # range offset and initial disparity need to be applied after
        arr_disp[i] += r_disp[0]                                       
        if arr_disp_init is not None: arr_disp[i] += arr_disp_init[i]
    return arr_disp
# export
def make_rect_match_arr_min_path(r_disp, hw, loss, min_path):
    @numba.jit(nopython=True)
    def rect_match_arr(arr1, arr2, arr_disp_init=None):
        return rect_match_arr_min_path(arr1, arr2, r_disp, hw, loss, min_path, arr_disp_init)
    return rect_match_arr
rect_match_arr = make_rect_match_arr_min_path(r_disp, hw, loss, min_path_int)
arr_disp = rect_match_arr(arr1, arr2)

Do it again so numba will compile and run faster.

arr_disp = rect_match_arr(arr1, arr2)

~200 ms is not bad. This could be realtime-ish performance for this image resolution.

_, axs = plt.subplots(1, 2, figsize=(15,10))
axs[0].imshow(arr_disp, vmin=min_disp, vmax=max_disp)
axs[1].imshow(arr1)
axs[1].imshow(arr_disp, vmin=min_disp, vmax=max_disp, alpha=0.5)
<matplotlib.image.AxesImage at 0x7f3c66f9a390>

png

As to be expected this doesn't look great; lets debug some problem areas

_debug_rect_loss_p(125, 60)

png

There is confusion with similar patterns. Note the found point on the right image is 3 stripes other rather than 2 on the left image.

_debug_rect_loss_p(125, 25)

png

Glare causes an issue; note the point on the right image is aligned to the glare instead of where it should be

_debug_rect_loss_p(45, 100)

png

This is actually wrong since the left part of the object is not visible to the right camera. It's more aligned to the side of the object rather than its actual location.

_debug_rect_loss_p(60, 125)

png

This might be due to the fact that sub images are not normalized (mean subtracted and divided by std-dev) before being compared.

Subpixel block matching

argmin_sub uses a single newton's iteration to find the root of the derivate (i.e. the minima). The update is the first derivative divided by the second derivative at the integer minimum location.

# export
@numba.jit(nopython=True)
def argmin_sub(arr):
    idx_min = argmin_int(arr)
    if 1 <= idx_min <= len(arr)-2:
        delta_idx = ((arr[idx_min+1]-arr[idx_min-1])/2)/(arr[idx_min+1]-2*arr[idx_min]+arr[idx_min-1])
        if np.isnan(delta_idx): delta_idx =  0
        if delta_idx < -1:      delta_idx = -1
        if delta_idx >  1:      delta_idx =  1
        idx_min = idx_min - delta_idx
    return idx_min
# export
@numba.jit(nopython=True)
def min_path_sub(arr_loss, buf_path):
    for i in range(len(arr_loss)):
        buf_path[i] = argmin_sub(arr_loss[i])
rect_match_arr = make_rect_match_arr_min_path(r_disp, hw, loss, min_path_sub)
arr_disp = rect_match_arr(arr1, arr2)
arr_disp = rect_match_arr(arr1, arr2)

Again, around ~200 ms, the subpixel stuff doesn't add much overhead

_, axs = plt.subplots(1, 2, figsize=(15,10))
axs[0].imshow(arr_disp, vmin=-15, vmax=15)
axs[1].imshow(arr1)
axs[1].imshow(arr_disp, vmin=-15, vmax=15, alpha=0.5)
<matplotlib.image.AxesImage at 0x7f3c666fc910>

png

Looks smoother near the center of the object.

Dynamic programming

The goal of dynamic programming is to find the shortest path from left to right in the following array:

arr_loss = _debug_rect_loss_l(75)

png

But with an added smoothness contraint. This will be in the form of a penalty for going "up" and "down" and also a max change between neighboring columns. The hope is that, in the above, the path taken will not skip down near the ~125 column, but will instead continue smoothly above it, because doing so would incur a pentalty.

# export
@numba.jit(nopython=True)
def _min_path_int_dp(arr_loss, buf_path, r_disp, max_change, penalty_disp):
    buf_route     = np.zeros(arr_loss.shape)
    buf_move      = np.empty((2*max_change+1, r_disp[1]-r_disp[0]+1))
    buf_loss_prev = arr_loss[-1].copy() # Going backwards, this is initial optimal loss
    for i in range(len(arr_loss)-2, -1, -1):
        # Get loss of each move
        buf_move[:] = np.inf
        for j in range(-max_change, max_change+1):
            idx_minl, idx_maxl = max( j,0), min(arr_loss.shape[1]+j,arr_loss.shape[1])
            idx_minm, idx_maxm = max(-j,0), min(arr_loss.shape[1]-j,arr_loss.shape[1])
            buf_move[j+max_change, idx_minm:idx_maxm] = buf_loss_prev[idx_minl:idx_maxl] + abs(j)*penalty_disp
        # Get optimal move and store it
        for j in range(buf_move.shape[1]):
            idx_min = np.argmin(buf_move[:,j])
            buf_route[i,j] = idx_min - max_change
            buf_loss_prev[j] = arr_loss[i,j] + buf_move[idx_min, j] # total loss = loss + optimal move
    # Gather path
    buf_path[0] = np.argmin(buf_loss_prev)
    for i in range(1, len(buf_route)):
        buf_path[i] = buf_path[i-1] + buf_route[i-1, int(buf_path[i-1])]
# export
def make_min_path_int_dp(r_disp, max_change, penalty_disp):
    @numba.jit(nopython=True)
    def min_path(arr_loss, buf_path):
        return _min_path_int_dp(arr_loss, buf_path, r_disp, max_change, penalty_disp)
    return min_path
max_change = 3
penalty_disp = 2
min_path_int_dp = make_min_path_int_dp(r_disp, max_change, penalty_disp)
def _debug_min_path(min_path):
    buf_path = np.empty(arr_loss.shape[0])
    min_path(arr_loss, buf_path)
    _, ax = plt.subplots(1, 1, figsize=(10,10))
    ax.imshow(arr_loss.T)
    plt.plot(buf_path, '-r')
_debug_min_path(min_path_int)

png

_debug_min_path(min_path_int_dp)

png

Dynamic programming punishes the jump near 125 and prevents it from happening... cool

rect_match_arr = make_rect_match_arr_min_path(r_disp, hw, loss, min_path_int_dp)
arr_disp = rect_match_arr(arr1, arr2)
arr_disp = rect_match_arr(arr1, arr2)

Again, ~200 ms, not bad.

_, axs = plt.subplots(1, 2, figsize=(15,10))
axs[0].imshow(arr_disp, vmin=-15, vmax=15)
axs[1].imshow(arr1)
axs[1].imshow(arr_disp, vmin=-15, vmax=15, alpha=0.5)
<matplotlib.image.AxesImage at 0x7f3c66d5aa50>

png

Definitely much smoother. The glare still causes problems though.

Sub pixel dynamic programming

I just basically replaced all argmins with argmin_sub and also replaced indexing with interp. This assumes smoothness between adjacent optimal paths and im not sure if its strictly correct, but it seems to work.

# export
@numba.jit(nopython=True)
def interp(arr, idx):
    if idx < 0 or idx > len(arr)-1: val = np.nan
    else:
        idx_f = np.floor(idx)
        if idx == idx_f: val = arr[int(idx_f)]
        else:            val = (idx_f+1-idx)*arr[int(idx_f)] + (idx-idx_f)*arr[int(idx_f)+1]
    return val
arr = np.array([1,2,3])
assert_allclose(np.isnan(interp(arr, -0.5)), True)
assert_allclose(         interp(arr,  0.0),  1.0)
assert_allclose(         interp(arr,  0.5),  1.5)
assert_allclose(         interp(arr,  1.0),  2.0)
assert_allclose(         interp(arr,  1.5),  2.5)
assert_allclose(         interp(arr,  2.0),  3.0)
assert_allclose(np.isnan(interp(arr,  2.5)), True)
# export
@numba.jit(nopython=True)
def _min_path_sub_dp(arr_loss, buf_path, r_disp, max_change, penalty_disp):
    buf_route     = np.zeros(arr_loss.shape)
    buf_move      = np.empty((2*max_change+1, r_disp[1]-r_disp[0]+1))
    buf_loss_prev = arr_loss[-1].copy() # Going backwards, this is initial optimal loss
    for i in range(len(arr_loss)-2, -1, -1):
        # Get loss of each move
        buf_move[:] = np.inf
        for j in range(-max_change, max_change+1):
            idx_minl, idx_maxl = max( j,0), min(arr_loss.shape[1]+j,arr_loss.shape[1])
            idx_minm, idx_maxm = max(-j,0), min(arr_loss.shape[1]-j,arr_loss.shape[1])
            buf_move[j+max_change, idx_minm:idx_maxm] = buf_loss_prev[idx_minl:idx_maxl] + abs(j)*penalty_disp
        # Get optimal move and store it
        for j in range(buf_move.shape[1]):
            idx_min = argmin_sub(buf_move[:,j])
            buf_route[i,j] = idx_min - max_change
            buf_loss_prev[j] = arr_loss[i,j] + interp(buf_move[:, j], idx_min)
    # Gather path
    buf_path[0] = argmin_sub(buf_loss_prev)
    for i in range(1, len(buf_route)):
        buf_path[i] = buf_path[i-1] + interp(buf_route[i-1], buf_path[i-1])
# export
def make_min_path_sub_dp(r_disp, max_change, penalty_disp):
    @numba.jit(nopython=True)
    def min_path(arr_loss, buf_path):
        return _min_path_sub_dp(arr_loss, buf_path, r_disp, max_change, penalty_disp)
    return min_path
min_path_sub_dp = make_min_path_sub_dp(r_disp, max_change, penalty_disp)
_debug_min_path(min_path_sub_dp)

png

It's smooth now

rect_match_arr = make_rect_match_arr_min_path(r_disp, hw, loss, min_path_sub_dp)
arr_disp = rect_match_arr(arr1, arr2)
arr_disp = rect_match_arr(arr1, arr2)

Still ~200 ms

_, axs = plt.subplots(1, 2, figsize=(15,10))
axs[0].imshow(arr_disp, vmin=-15, vmax=15)
axs[1].imshow(arr1)
axs[1].imshow(arr_disp, vmin=-15, vmax=15, alpha=0.5)
<matplotlib.image.AxesImage at 0x7f3c6651cb10>

png

It's a little bit different from the integer version, but overall it looks similar and is smoother

Image pyramid

Try using an image pyramid with "telescoping" search. Note that I've kept the window size the same for each level. In the most reduced image, it will use a proportionally larger window to get the overall translation correct, then in larger images, the proportionally smaller window will localize better (in theory at least).

# export
def rect_match_pyr(arr1, arr2, rect_match_arr, steps=3):
    if not np.all(shape(arr1) % 2**steps == 0): raise RuntimeError('Shape must be divisible by 2^steps')

    def _get_pyr(arr):
        arr_pyr = [arr]
        for idx in range(steps-1): 
            arr_pyr.append(imresize(arr_pyr[-1], shape(arr_pyr[-1])/2))
        return arr_pyr
    arr1_pyr, arr2_pyr = [_get_pyr(arr) for arr in [arr1, arr2]]

    arr_disp = None
    for idx in range(steps-1,-1,-1):
        arr1, arr2 = arr1_pyr[idx], arr2_pyr[idx]
        if arr_disp is not None:
            arr_disp = imresize(2*arr_disp, 2*shape(arr_disp)) # Remember to multiply disparities by 2
            arr_disp = np.round(arr_disp).astype(np.long)      # Must be integer
        arr_disp = rect_match_arr(arr1, arr2, arr_disp)
    return arr_disp
r_disp = (-5,5)
rect_match_arr = make_rect_match_arr_min_path(r_disp, hw, loss, min_path_sub)
arr_disp = rect_match_pyr(arr1, arr2, rect_match_arr)
arr_disp = rect_match_pyr(arr1, arr2, rect_match_arr)

~100 ms, could probably optimize more but its fast

_, axs = plt.subplots(1, 2, figsize=(15,10))
axs[0].imshow(arr_disp, vmin=-15, vmax=15)
axs[1].imshow(arr1)
axs[1].imshow(arr_disp, vmin=-15, vmax=15, alpha=0.5)
<matplotlib.image.AxesImage at 0x7f3c640bbd50>

png

min_path_sub_dp = make_min_path_sub_dp(r_disp, max_change, penalty_disp)
rect_match_arr = make_rect_match_arr_min_path(r_disp, hw, loss, min_path_sub_dp)
arr_disp = rect_match_pyr(arr1, arr2, rect_match_arr)
arr_disp = rect_match_pyr(arr1, arr2, rect_match_arr)

~150 ms, a little slower but still pretty fast

_, axs = plt.subplots(1, 2, figsize=(15,10))
axs[0].imshow(arr_disp, vmin=-15, vmax=15)
axs[1].imshow(arr1)
axs[1].imshow(arr_disp, vmin=-15, vmax=15, alpha=0.5)
<matplotlib.image.AxesImage at 0x7f3c523c3d10>

png

SGM

Semi global matching is another popular method thats fast but has more smoothness constraints than dynamic programming (which is restricted to rows). A lot of SGM implementations I've seen usually have a fixed number of directions (like 8 cardinal directions) which are hard coded. I want to be able to input any direction and see what the output disparity map looks like. I've attempted to do this by implementing a line_loop which will iterate over an array in non-overlapping lines.

Line loop

np.isclose hasnt been implemented yet

# export
@numba.jit(nopython=True)
def isclose(x, y, atol=1e-8): return abs(x-y) < atol

np.clip hasnt been implemented yet

# export
@numba.jit(nopython=True)
def clip(x, min_x, max_x): return max(min(x, max_x), min_x)

line_loop will iterate over an arr line by line in a non-overlapping and full/unique manner given an input theta.

# export
@numba.jit(nopython=True)
def line_loop(arr, theta, callback):
    h, w = arr.shape[0:2]

    # Get dx, dy
    dx, dy = np.cos(theta), np.sin(theta)
    if    isclose(dx, 0): dx, dy = 0, np.sign(dy)*h
    elif  isclose(dy, 0): dx, dy = np.sign(dx)*w, 0
    else:
        sf = min(abs(dx), abs(dy))
        dx, dy = np.round(dx/sf), np.round(dy/sf)
        dx, dy = clip(dx, 1-w, w-1), clip(dy, 1-h, h-1)
    dx, dy = int(dx), int(dy)

    # Get increments
    if abs(dx) > abs(dy): l, dx_l, dy_l, dx_c, dy_c = abs(dx), np.sign(dx), 0, 0, np.sign(dy)
    else:                 l, dx_l, dy_l, dx_c, dy_c = abs(dy), 0, np.sign(dy), np.sign(dx), 0

    # Get initial p0
    if   0 <= dx <   w and 0 <  dy <=  h: x0, y0 = w-1,   0
    elif 0 <  dx <=  w and 0 >= dy >  -h: x0, y0 =   0,   0
    elif 0 >= dx >  -w and 0 >  dy >= -h: x0, y0 =   0, h-1
    elif 0 >  dx >= -w and 0 <= dy <   h: x0, y0 = w-1, h-1
    else: raise RuntimeError('Invalid dx, dy')

    # Do line iterations
    it_p, num_p = 0, h*w              # Iterate until it_p == num_p
    while it_p < num_p:
        x, y, started = x0, y0, False # Start tracing line at p0
        while True:
            for i in range(l):
                if (0 <= x < w) and (0 <= y < h):
                    if not started: callback.start_line(arr, x, y); started=True
                    else:           callback.in_line(arr, x, y)
                    it_p += 1         # Point increment
                x += dx_l; y += dy_l  # Line increment
            x += dx_c; y += dy_c      # Change increment
            if not ((0 <= x < w) and (0 <= y < h)): break # Lines goes out of array, so end this line
        # Shift start of line based on current p0
        if   x0 >= w-1 and y0 >=   1: y0 -= max(abs(dy), 1)
        elif x0 >=   1 and y0 <=   0: x0 -= max(abs(dx), 1)
        elif x0 <=   0 and y0 <= h-2: y0 += max(abs(dy), 1)
        elif x0 <= w-2 and y0 >= h-1: x0 += max(abs(dx), 1)
        else: raise RuntimeError('Invalid x0, y0')

Line loop tests

Use callbacks to test

@numba.experimental.jitclass([('it', numba.int32)])
class callback_itfill(object):
    def __init__(self):              self.it = -1
    def start_line(self, arr, x, y): self.it += 1; arr[y, x] = self.it
    def in_line(self, arr, x, y):    self.it += 1; arr[y, x] = self.it
@numba.experimental.jitclass([('line', numba.int32)])
class callback_linefill(object):
    def __init__(self):              self.line = -1
    def start_line(self, arr, x, y): self.line += 1; arr[y, x] = self.line
    def in_line(self, arr, x, y):    arr[y, x] = self.line
@numba.experimental.jitclass([('line', numba.int32)])
class callback_startfill(object):
    def __init__(self):              self.line = -1
    def start_line(self, arr, x, y): self.line += 1; arr[y, x] = self.line
    def in_line(self, arr, x, y):    pass

Do 16 cardinal directions

arr = np.full((3, 4), -1)
theta = (0/8)*np.pi
arr[:] = -1; line_loop(arr, theta, callback_itfill())
assert_allclose(arr, np.array([[ 0,  1,  2,  3],
                               [ 4,  5,  6,  7],
                               [ 8,  9, 10, 11]]))
arr[:] = -1; line_loop(arr, theta, callback_linefill())
assert_allclose(arr, np.array([[0, 0, 0, 0],
                               [1, 1, 1, 1],
                               [2, 2, 2, 2]]))
arr[:] = -1; line_loop(arr, theta, callback_startfill())
assert_allclose(arr, np.array([[ 0, -1, -1, -1],
                               [ 1, -1, -1, -1],
                               [ 2, -1, -1, -1]]))
theta = (1/8)*np.pi
arr[:] = -1; line_loop(arr, theta, callback_itfill())
assert_allclose(arr, np.array([[ 4,  1,  2,  0],
                               [ 8,  5,  6,  3],
                               [11,  9, 10,  7]]))
arr[:] = -1; line_loop(arr, theta, callback_linefill())
assert_allclose(arr, np.array([[2, 1, 1, 0],
                               [3, 2, 2, 1],
                               [4, 3, 3, 2]]))
arr[:] = -1; line_loop(arr, theta, callback_startfill())
assert_allclose(arr, np.array([[ 2,  1, -1,  0],
                               [ 3, -1, -1, -1],
                               [ 4, -1, -1, -1]]))
theta = (2/8)*np.pi
arr[:] = -1; line_loop(arr, theta, callback_itfill())
assert_allclose(arr, np.array([[ 6,  3,  1,  0],
                               [ 9,  7,  4,  2],
                               [11, 10,  8,  5]]))
arr[:] = -1; line_loop(arr, theta, callback_linefill())
assert_allclose(arr, np.array([[3, 2, 1, 0],
                               [4, 3, 2, 1],
                               [5, 4, 3, 2]]))
arr[:] = -1; line_loop(arr, theta, callback_startfill())
assert_allclose(arr, np.array([[ 3,  2,  1,  0],
                               [ 4, -1, -1, -1],
                               [ 5, -1, -1, -1]]))
theta = (3/8)*np.pi
arr[:] = -1; line_loop(arr, theta, callback_itfill())
assert_allclose(arr, np.array([[ 8,  5,  2,  0],
                               [ 9,  6,  3,  1],
                               [11, 10,  7,  4]]))
arr[:] = -1; line_loop(arr, theta, callback_linefill())
assert_allclose(arr, np.array([[3, 2, 1, 0],
                               [3, 2, 1, 0],
                               [4, 3, 2, 1]]))
arr[:] = -1; line_loop(arr, theta, callback_startfill())
assert_allclose(arr, np.array([[ 3,  2,  1,  0],
                               [-1, -1, -1, -1],
                               [ 4, -1, -1, -1]]))
theta = (4/8)*np.pi
arr[:] = -1; line_loop(arr, theta, callback_itfill())
assert_allclose(arr, np.array([[ 9,  6,  3,  0],
                               [10,  7,  4,  1],
                               [11,  8,  5,  2]]))
arr[:] = -1; line_loop(arr, theta, callback_linefill())
assert_allclose(arr, np.array([[3, 2, 1, 0],
                               [3, 2, 1, 0],
                               [3, 2, 1, 0]]))
arr[:] = -1; line_loop(arr, theta, callback_startfill())
assert_allclose(arr, np.array([[ 3,  2,  1,  0],
                               [-1, -1, -1, -1],
                               [-1, -1, -1, -1]]))
theta = (5/8)*np.pi
arr[:] = -1; line_loop(arr, theta, callback_itfill())
assert_allclose(arr, np.array([[10,  7,  4,  1],
                               [11,  8,  5,  2],
                               [ 9,  6,  3,  0]]))
arr[:] = -1; line_loop(arr, theta, callback_linefill())
assert_allclose(arr, np.array([[4, 3, 2, 1],
                               [4, 3, 2, 1],
                               [3, 2, 1, 0]]))
arr[:] = -1; line_loop(arr, theta, callback_startfill())
assert_allclose(arr, np.array([[ 4,  3,  2,  1],
                               [-1, -1, -1, -1],
                               [-1, -1, -1,  0]]))
theta = (6/8)*np.pi
arr[:] = -1; line_loop(arr, theta, callback_itfill())
assert_allclose(arr, np.array([[11,  9,  6,  3],
                               [10,  7,  4,  1],
                               [ 8,  5,  2,  0]]))
arr[:] = -1; line_loop(arr, theta, callback_linefill())
assert_allclose(arr, np.array([[5, 4, 3, 2],
                               [4, 3, 2, 1],
                               [3, 2, 1, 0]]))
arr[:] = -1; line_loop(arr, theta, callback_startfill())
assert_allclose(arr, np.array([[ 5,  4,  3,  2],
                               [-1, -1, -1,  1],
                               [-1, -1, -1,  0]]))
theta = (7/8)*np.pi
arr[:] = -1; line_loop(arr, theta, callback_itfill())
assert_allclose(arr, np.array([[11, 10,  7,  6],
                               [ 9,  8,  3,  2],
                               [ 5,  4,  1,  0]]))
arr[:] = -1; line_loop(arr, theta, callback_linefill())
assert_allclose(arr, np.array([[3, 3, 2, 2],
                               [2, 2, 1, 1],
                               [1, 1, 0, 0]]))
arr[:] = -1; line_loop(arr, theta, callback_startfill())
assert_allclose(arr, np.array([[-1,  3, -1,  2],
                               [-1, -1, -1,  1],
                               [-1, -1, -1,  0]]))
theta = (8/8)*np.pi
arr[:] = -1; line_loop(arr, theta, callback_itfill())
assert_allclose(arr, np.array([[11, 10,  9,  8],
                               [ 7,  6,  5,  4],
                               [ 3,  2,  1,  0]]))
arr[:] = -1; line_loop(arr, theta, callback_linefill())
assert_allclose(arr, np.array([[2, 2, 2, 2],
                               [1, 1, 1, 1],
                               [0, 0, 0, 0]]))
arr[:] = -1; line_loop(arr, theta, callback_startfill())
assert_allclose(arr, np.array([[-1, -1, -1,  2],
                               [-1, -1, -1,  1],
                               [-1, -1, -1,  0]]))
theta = (9/8)*np.pi
arr[:] = -1; line_loop(arr, theta, callback_itfill())
assert_allclose(arr, np.array([[ 7, 10,  9, 11],
                               [ 3,  6,  5,  8],
                               [ 0,  2,  1,  4]]))
arr[:] = -1; line_loop(arr, theta, callback_linefill())
assert_allclose(arr, np.array([[2, 3, 3, 4],
                               [1, 2, 2, 3],
                               [0, 1, 1, 2]]))
arr[:] = -1; line_loop(arr, theta, callback_startfill())
assert_allclose(arr, np.array([[-1, -1, -1,  4],
                               [-1, -1, -1,  3],
                               [ 0, -1,  1,  2]]))
theta = (10/8)*np.pi
arr[:] = -1; line_loop(arr, theta, callback_itfill())
assert_allclose(arr, np.array([[ 5,  8, 10, 11],
                               [ 2,  4,  7,  9],
                               [ 0,  1,  3,  6]]))
arr[:] = -1; line_loop(arr, theta, callback_linefill())
assert_allclose(arr, np.array([[2, 3, 4, 5],
                               [1, 2, 3, 4],
                               [0, 1, 2, 3]]))
arr[:] = -1; line_loop(arr, theta, callback_startfill())
assert_allclose(arr, np.array([[-1, -1, -1,  5],
                               [-1, -1, -1,  4],
                               [ 0,  1,  2,  3]]))
theta = (11/8)*np.pi
arr[:] = -1; line_loop(arr, theta, callback_itfill())
assert_allclose(arr, np.array([[ 4,  7, 10, 11],
                               [ 1,  3,  6,  9],
                               [ 0,  2,  5,  8]]))
arr[:] = -1; line_loop(arr, theta, callback_linefill())
assert_allclose(arr, np.array([[1, 2, 3, 4],
                               [0, 1, 2, 3],
                               [0, 1, 2, 3]]))
arr[:] = -1; line_loop(arr, theta, callback_startfill())
assert_allclose(arr, np.array([[-1, -1, -1,  4],
                               [-1, -1, -1, -1],
                               [ 0,  1,  2,  3]]))
theta = (12/8)*np.pi
arr[:] = -1; line_loop(arr, theta, callback_itfill())
assert_allclose(arr, np.array([[ 2,  5,  8, 11],
                               [ 1,  4,  7, 10],
                               [ 0,  3,  6,  9]]))
arr[:] = -1; line_loop(arr, theta, callback_linefill())
assert_allclose(arr, np.array([[0, 1, 2, 3],
                               [0, 1, 2, 3],
                               [0, 1, 2, 3]]))
arr[:] = -1; line_loop(arr, theta, callback_startfill())
assert_allclose(arr, np.array([[-1, -1, -1, -1],
                               [-1, -1, -1, -1],
                               [ 0,  1,  2,  3]]))
theta = (13/8)*np.pi
arr[:] = -1; line_loop(arr, theta, callback_itfill())
assert_allclose(arr, np.array([[ 0,  3,  6,  9],
                               [ 2,  5,  8, 11],
                               [ 1,  4,  7, 10]]))
arr[:] = -1; line_loop(arr, theta, callback_linefill())
assert_allclose(arr, np.array([[0, 1, 2, 3],
                               [1, 2, 3, 4],
                               [1, 2, 3, 4]]))
arr[:] = -1; line_loop(arr, theta, callback_startfill())
assert_allclose(arr, np.array([[ 0, -1, -1, -1],
                               [-1, -1, -1, -1],
                               [ 1,  2,  3,  4]]))
theta = (14/8)*np.pi
arr[:] = -1; line_loop(arr, theta, callback_itfill())
assert_allclose(arr, np.array([[ 0,  2,  5,  8],
                               [ 1,  4,  7, 10],
                               [ 3,  6,  9, 11]]))
arr[:] = -1; line_loop(arr, theta, callback_linefill())
assert_allclose(arr, np.array([[0, 1, 2, 3],
                               [1, 2, 3, 4],
                               [2, 3, 4, 5]]))
arr[:] = -1; line_loop(arr, theta, callback_startfill())
assert_allclose(arr, np.array([[ 0, -1, -1, -1],
                               [ 1, -1, -1, -1],
                               [ 2,  3,  4,  5]]))
theta = (15/8)*np.pi
arr[:] = -1; line_loop(arr, theta, callback_itfill())
assert_allclose(arr, np.array([[ 0,  1,  4,  5],
                               [ 2,  3,  8,  9],
                               [ 6,  7, 10, 11]]))
arr[:] = -1; line_loop(arr, theta, callback_linefill())
assert_allclose(arr, np.array([[0, 0, 1, 1],
                               [1, 1, 2, 2],
                               [2, 2, 3, 3]]))
arr[:] = -1; line_loop(arr, theta, callback_startfill())
assert_allclose(arr, np.array([[ 0, -1, -1, -1],
                               [ 1, -1, -1, -1],
                               [ 2, -1,  3, -1]]))

SGM implementation

First, we need to precompute the disparity losses for the entire array; this buffer can be quite large for large images

# export
@numba.jit(nopython=True, parallel=True)
def rect_loss_arr(arr1, arr2, r_disp, hw, loss, buf_loss, arr_disp_init=None):
    h_arr, w_arr = arr1.shape
    for i in numba.prange(h_arr):
        rect_loss_l(arr1, arr2, i, r_disp, hw, loss, buf_loss[i], arr_disp_init)
# export
@numba.experimental.jitclass([('buf_accum', numba.float64[:,:,:]), 
                              ('buf_move', numba.float64[:,:]),
                              ('x_prev', numba.int32), 
                              ('y_prev', numba.int32),
                              ('max_change', numba.int32),
                              ('penalty_disp', numba.int32)])
class callback_sgm(object):
    def __init__(self, sz, r_disp, max_change, penalty_disp):
        self.buf_accum = np.empty((sz[0], sz[1], r_disp[1]-r_disp[0]+1))
        self.buf_move = np.empty((2*max_change+1, r_disp[1]-r_disp[0]+1))
        self.x_prev, self.y_prev = -1, -1
        self.max_change, self.penalty_disp = max_change, penalty_disp

    def start_line(self, arr, x, y):
        self.buf_accum[y, x] = arr[y, x] # Initialize
        self.x_prev, self.y_prev = x, y

    def in_line(self, arr, x, y):
        # Get loss of each move
        self.buf_move[:] = np.inf
        for j in range(-self.max_change, self.max_change+1):
            idx_minl, idx_maxl = max( j,0), min(self.buf_move.shape[1]+j,self.buf_move.shape[1])
            idx_minm, idx_maxm = max(-j,0), min(self.buf_move.shape[1]-j,self.buf_move.shape[1])
            self.buf_move[j+max_change, idx_minm:idx_maxm] = \
                self.buf_accum[self.y_prev, self.x_prev, idx_minl:idx_maxl] + abs(j)*self.penalty_disp

        # Get optimal cost and store it
        for j in range(self.buf_move.shape[1]):
            self.buf_accum[y, x, j] = arr[y, x, j] + np.min(self.buf_move[:, j])

        self.x_prev, self.y_prev = x, y

Precompute loss array

r_disp = (-15, 15)
buf_loss = np.empty((arr1.shape[0], arr1.shape[1], r_disp[1]-r_disp[0]+1))
rect_loss_arr(arr1, arr2, r_disp, hw, loss, buf_loss)

Get SGM callback

callback = callback_sgm(arr1.shape, r_disp, max_change, penalty_disp)

Plot each direction

fig, axs = plt.subplots(4, 4, figsize=(20, 20))
for idx, ax in enumerate(axs.flatten()):
    theta = (idx/8)*np.pi
    line_loop(buf_loss, theta, callback)
    ax.imshow(np.argmin(callback.buf_accum, axis=2))
    ax.set_title(f'Theta: {theta}')

png

Make api for sgm

# export
@numba.jit(nopython=True, parallel=True)
def rect_match_arr_sgm(arr1, arr2, r_disp, hw, loss, max_change, penalty_disp, thetas, arr_disp_init=None):
    h_arr, w_arr = arr1.shape[0], arr1.shape[1]

    # Precompute losses
    buf_loss = np.empty((h_arr, w_arr, r_disp[1]-r_disp[0]+1))
    rect_loss_arr(arr1, arr2, r_disp, hw, loss, buf_loss, arr_disp_init)

    # Do SGM accumulation
    callback = callback_sgm(arr1.shape, r_disp, max_change, penalty_disp)
    buf_accum = np.zeros((h_arr, w_arr, r_disp[1]-r_disp[0]+1))
    for theta in thetas:
        line_loop(buf_loss, theta, callback)
        buf_accum += callback.buf_accum

    # Get disparity map
    arr_disp = np.empty((h_arr, w_arr))
    for i in range(arr1.shape[0]):
        for j in range(arr2.shape[1]):
            arr_disp[i, j] = np.argmin(buf_accum[i, j]) + r_disp[0]
    if arr_disp_init is not None: arr_disp += arr_disp_init
    return arr_disp
# export
def make_rect_match_arr_sgm(r_disp, hw, loss, max_change, penalty_disp, thetas):
    @numba.jit(nopython=True)
    def rect_match_arr(arr1, arr2, arr_disp_init=None):
        return rect_match_arr_sgm(arr1, arr2, r_disp, hw, loss, max_change, penalty_disp, thetas, arr_disp_init)
    return rect_match_arr
hw = 15
num_directions = 16
thetas = np.linspace(0, 2*np.pi, num_directions+1)[:-1]
rect_match_arr = make_rect_match_arr_sgm(r_disp, hw, loss, max_change, penalty_disp, thetas)
arr_disp = rect_match_arr(arr1, arr2)
arr_disp = rect_match_arr(arr1, arr2)

I think this is slower primarily because input to the line looper is a class, so I think the callback isn't getting inlined which incurs more overhead, but not sure.

_, axs = plt.subplots(1, 2, figsize=(15,10))
axs[0].imshow(arr_disp, vmin=-15, vmax=15)
axs[1].imshow(arr1)
axs[1].imshow(arr_disp, vmin=-15, vmax=15, alpha=0.5)
<matplotlib.image.AxesImage at 0x7f3c51ddc4d0>

png

Try pyramid

arr_disp = rect_match_pyr(arr1, arr2, rect_match_arr)
arr_disp = rect_match_pyr(arr1, arr2, rect_match_arr)
_, axs = plt.subplots(1, 2, figsize=(15,10))
axs[0].imshow(arr_disp, vmin=-15, vmax=15)
axs[1].imshow(arr1)
axs[1].imshow(arr_disp, vmin=-15, vmax=15, alpha=0.5)
<matplotlib.image.AxesImage at 0x7f3c518bda10>

png

It's slower... probably because overhead within the sgm call, so pyramiding doesn't help, and might look worse because smoothness contraints are only applied for new disparities added at the every level, so it won't be as smooth.

API

# export
class RectMatch:
    def __init__(self, type_rect_match, hw=15, r_disp=(-15,15), loss=SAD, max_change=3, penalty_disp=2, steps=1):
        if type_rect_match in ['int', 'sub', 'int_dp', 'sub_dp']:
            if   type_rect_match == 'int':
                min_path = min_path_int
            elif type_rect_match == 'sub':
                min_path = min_path_sub
            elif type_rect_match == 'int_dp': 
                min_path = make_min_path_int_dp(r_disp, max_change, penalty_disp)
            elif type_rect_match == 'sub_dp':
                min_path = make_min_path_sub_dp(r_disp, max_change, penalty_disp)
            rect_match_arr = make_rect_match_arr_min_path(r_disp, hw, loss, min_path)
        elif type_rect_match == 'sgm':    
            rect_match_arr = make_rect_match_arr_sgm(r_disp, hw, loss, max_change, penalty_disp, thetas)
        else: 
            raise RuntimeError(f'Unrecognized min path type: {type_rect_match}')
        self.rect_match_arr, self.steps = rect_match_arr, steps

    def __call__(self, arr1, arr2): 
        return rect_match_pyr(arr1, arr2, self.rect_match_arr, self.steps)
types_rect_match = ['int', 'sub', 'int_dp', 'sub_dp', 'sgm']
rect_matchs = [RectMatch(type_rect_match) for type_rect_match in types_rect_match]
_, axs = plt.subplots(3, 2, figsize=(15,20))
for ax, rect_match, type_rect_match in zip(axs.ravel(), rect_matchs, types_rect_match): 
    ax.imshow(rect_match(arr1, arr2), vmin=-15, vmax=15)
    ax.set_title(type_rect_match)
axs[2,1].set_visible(False)

png

Build

build_notebook()
<IPython.core.display.Javascript object>


Converted README.ipynb.
convert_notebook()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

disparity-0.0.5.tar.gz (40.8 kB view details)

Uploaded Source

Built Distribution

disparity-0.0.5-py3-none-any.whl (20.1 kB view details)

Uploaded Python 3

File details

Details for the file disparity-0.0.5.tar.gz.

File metadata

  • Download URL: disparity-0.0.5.tar.gz
  • Upload date:
  • Size: 40.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.4.0.post20200813 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.7

File hashes

Hashes for disparity-0.0.5.tar.gz
Algorithm Hash digest
SHA256 094df2c64070096da0e858f26efd50cdd1e2edd7be358d5d1e9b6317e90b297c
MD5 ceda940bb8e94d2657462919e8fcaa20
BLAKE2b-256 dff2acfd46d97019ae2a032df3b26ed003acdf4e6ed1ca24f5b4925b44e4bb9d

See more details on using hashes here.

File details

Details for the file disparity-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: disparity-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 20.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.4.0.post20200813 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.7

File hashes

Hashes for disparity-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 6c97e87ed70e42cafe27105c16a4ac8b0a38138b847178546b32ad6b958687b5
MD5 ea648826c575b0fb9972060c6137b4b4
BLAKE2b-256 0a4dc1ad49bc59d0d78997e33db254f21b6faff94d5f7a9b9eb3c1b84ba8dd59

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page