Skip to main content

No project description provided

Project description

Quickstart

Step 1: Install the data package in your DISPATCHES environment using pip

conda activate dispatches-dev  # or the name of your DISPATCHES dev environment
pip install git+https://github.com/gmlc-dispatches/dynamic-sweep-data

Step 2: Access the contents of the data package in your code using dispatches_data.api

Using dispatches_data.api.path():

from dispatches_data.api import path

# path_to_data_package is a standard pathlib.Path object
path_to_data_package = path("dynamic_sweep")

# subdirectories and files can be accessed using the pathlib.Path API
path_to_NE_results = path_to_data_package / "NE" / "sweep_parameters_results_NE_whole.h5"
assert path_to_NE_results.is_file()

# if the path must be passed to a function that only accepts `str` objects, it can be converted using `str()`
path_to_NE_results_as_str = str(path_to_NE_results)

Using dispatches_data.api.files():

from dispatches_data.api import files

# paths_to_all_results_files will be a list of pathlib.Path objects for each file matching the specified `pattern`
paths_to_all_results_files = files("dynamic_sweep", pattern="**/sweep_parameters_results_*_whole.h5")
# check that the list of found files is not empty
assert paths_to_all_results_files

# `dispatches_data.api.files()` always returns a list, even if only one file matches
path_to_NE_results = files("dynamic_sweep", pattern="NE/*result_*_whole.h5")[0]

Examples

Loading multiple CSV files into a pandas DataFrame

import pandas as pd
from dispatches_data.api import files


def load_data(case_study: str = "NE") -> pd.DataFrame:
    results_file_pattern = f"{case_study}/results_*_sweep_*/*.csv"
    csv_files_to_load = files("dynamic_sweep", pattern=results_files_pattern)
    if not csv_files_to_load:
        raise LookupError("No files found with pattern {results_file_pattern!r}")
    df = pd.concat(
        [pd.read_csv(csv_path) for csv_path in csv_files_to_load],
        axis="index"
    )
    # process df as needed
    return df


def main():
    df_NE = load_data("NE")
    df_RE = load_data("RE")
    ...

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dispatches-dynamic-sweep-data-23.7.24.tar.gz (72.5 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file dispatches-dynamic-sweep-data-23.7.24.tar.gz.

File metadata

File hashes

Hashes for dispatches-dynamic-sweep-data-23.7.24.tar.gz
Algorithm Hash digest
SHA256 132376b07b8c61434c9aca60cf38f2328b3a4a9fca61dfa5dcbd1b2077a2423f
MD5 9074da365beaffee550cd051a45c72f4
BLAKE2b-256 5f18fcb1edde3dbbfa4ba1ab4b1743c6ecc6b3768ad5e009003ac470d8340162

See more details on using hashes here.

File details

Details for the file dispatches_dynamic_sweep_data-23.7.24-py3-none-any.whl.

File metadata

File hashes

Hashes for dispatches_dynamic_sweep_data-23.7.24-py3-none-any.whl
Algorithm Hash digest
SHA256 7ac040c75a6b2f6ddf74d5d292f4e7668e86e8c8a68702b4193eaa2855c12039
MD5 f81f618ac8ec913531d78b7cd01b90bd
BLAKE2b-256 e16a46feee15a151e5386239aab5d80764fb8b8a5c2861fecabba63b10dcd7d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page