Skip to main content

Tool for displaying numpy arrays.

Project description

A library for displaying arrays as video in Python.

Display arrays while updating them

from displayarray import display
import numpy as np

arr = np.random.normal(0.5, 0.1, (100, 100, 3))

with display(arr) as d:
    while d:
        arr[:] += np.random.normal(0.001, 0.0005, (100, 100, 3))
        arr %= 1.0

Run functions on 60fps webcam or video input

image0

(Video Source: https://www.youtube.com/watch?v=WgXQ59rg0GM)

from displayarray import display
import math as m

def forest_color(arr):
    forest_color.i += 1
    arr[..., 0] = (m.sin(forest_color.i*(2*m.pi)*4/360)*255 + arr[..., 0]) % 255
    arr[..., 1] = (m.sin((forest_color.i * (2 * m.pi) * 5 + 45) / 360) * 255 + arr[..., 1]) % 255
    arr[..., 2] = (m.cos(forest_color.i*(2*m.pi)*3/360)*255 + arr[..., 2]) % 255

forest_color.i = 0

display("fractal test.mp4", callbacks=forest_color, blocking=True, fps_limit=120)

Display tensors as they’re running through TensorFlow or PyTorch

# see test_display_tensorflow in test_simple_apy for full code.

...

autoencoder.compile(loss="mse", optimizer="adam")

while displayer:
    grab = tf.convert_to_tensor(
        displayer.FRAME_DICT["fractal test.mp4frame"][np.newaxis, ...].astype(np.float32)
        / 255.0
    )
    grab_noise = tf.convert_to_tensor(
        (((displayer.FRAME_DICT["fractal test.mp4frame"][np.newaxis, ...].astype(
            np.float32) + np.random.uniform(0, 255, grab.shape)) / 2) % 255)
        / 255.0
    )
    displayer.update((grab_noise.numpy()[0] * 255.0).astype(np.uint8), "uid for grab noise")
    autoencoder.fit(grab_noise, grab, steps_per_epoch=1, epochs=1)
    output_image = autoencoder.predict(grab, steps=1)
    displayer.update((output_image[0] * 255.0).astype(np.uint8), "uid for autoencoder output")

Handle input events

Mouse events captured whenever the mouse moves over the window:

event:0
x,y:133,387
flags:0
param:None

Code:

from displayarray.input import mouse_loop
from displayarray import display

@mouse_loop
def print_mouse_thread(mouse_event):
    print(mouse_event)

display("fractal test.mp4", blocking=True)

Installation

displayarray is distributed on PyPI as a universal wheel in Python 3.6+ and PyPy.

$ pip install displayarray

Usage

API has been generated here.

See tests and examples for example usage.

License

displayarray is distributed under the terms of both

at your option.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

displayarray-1.3.1.tar.gz (22.4 kB view details)

Uploaded Source

Built Distribution

displayarray-1.3.1-py3-none-any.whl (29.4 kB view details)

Uploaded Python 3

File details

Details for the file displayarray-1.3.1.tar.gz.

File metadata

  • Download URL: displayarray-1.3.1.tar.gz
  • Upload date:
  • Size: 22.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for displayarray-1.3.1.tar.gz
Algorithm Hash digest
SHA256 b0f5cc4d06d44750faf73c8d8568d6b288ea98839a82687109722a93b59a7cdd
MD5 6f69d44f245460219c72634b10a6db5c
BLAKE2b-256 ecfae64876bbc2633aa7235edcc9085ef10fa0be8b39b2944c3cd4996e3eb073

See more details on using hashes here.

File details

Details for the file displayarray-1.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for displayarray-1.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a9f3247b7bbf8f579b8ae4062587ab089f3f69a8979749120e3916a22aef9377
MD5 8b6f284695b5e17c8b5c47dff6c4bf30
BLAKE2b-256 0596099ca161bd63aac710f077a7d21002a79ebb25962188b158b2973cdf5774

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page