Skip to main content

Distributed Memory Arrays for Python

Project description

Think globally, act locally.

DistArray provides general multidimensional NumPy-like distributed arrays to Python. It intends to bring the strengths of NumPy to data-parallel high-performance computing. DistArray has a similar API to NumPy.

DistArray is ready for real-world testing and deployment; however, the project is still evolving rapidly, and we appreciate continued input from the scientific-Python community.

DistArray is for users who

  • know and love Python and NumPy,

  • want to scale NumPy to larger distributed datasets,

  • want to interactively play with distributed data but also

  • want to run batch-oriented distributed programs;

  • want an easier way to drive and coordinate existing MPI-based codes,

  • have a lot of data that may already be distributed,

  • want a global view (“think globally”) with local control (“act locally”),

  • need to tap into existing parallel libraries like Trilinos, PETSc, or Elemental,

  • want the interactivity of IPython and the performance of MPI.

DistArray is designed to work with other packages that implement the Distributed Array Protocol.

Please see our documentation at readthedocs (or in the docs directory) for more, join our mailing list, or chat with us on #distarray on freenode. Pull requests gladly accepted.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

distarray-0.5.0.tar.gz (1.8 MB view details)

Uploaded Source

File details

Details for the file distarray-0.5.0.tar.gz.

File metadata

  • Download URL: distarray-0.5.0.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for distarray-0.5.0.tar.gz
Algorithm Hash digest
SHA256 70df5320043db89ea9fe6397f9dfccd5f3c35a63fb008e77480df607e7db8223
MD5 52239547ae0ef52939826080d1dd978c
BLAKE2b-256 6e84b7b0790f85b1a892dad178b412b6d86b44172b10b16d21387517cf365f00

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page