Skip to main content

distfit is a python library for probability density fitting.

Project description

Python Pypi Docs LOC Downloads Downloads License Forks Issues Project Status DOI Colab Donate

distfit is a python package for probability density fitting of univariate distributions for random variables. With the random variable as an input, distfit can find the best fit for parametric, non-parametric, and discrete distributions.

  • For the parametric approach, the distfit library can determine the best fit across 89 theoretical distributions. To score the fit, one of the scoring statistics for the good-of-fitness test can be used used, such as RSS/SSE, Wasserstein, Kolmogorov-Smirnov (KS), or Energy. After finding the best-fitted theoretical distribution, the loc, scale, and arg parameters are returned, such as mean and standard deviation for normal distribution.

  • For the non-parametric approach, the distfit library contains two methods, the quantile and percentile method. Both methods assume that the data does not follow a specific probability distribution. In the case of the quantile method, the quantiles of the data are modeled whereas for the percentile method, the percentiles are modeled.

  • In case the dataset contains discrete values, the distift library contains the option for discrete fitting. The best fit is then derived using the binomial distribution.

⭐️ Star this repo if you like it ⭐️

Documentation pages

On the documentation pages you can find detailed information about the distfit library with many examples.

Installation

Install distfit from PyPI
pip install distfit
Install from github source (beta version)
 install git+https://github.com/erdogant/distfit
Check version
import distfit
print(distfit.__version__)
The following functions are available after installation:
# Import library
from distfit import distfit

dist = distfit()        # Initialize 
dist.fit_transform(X)   # Fit distributions on empirical data X
dist.predict(y)         # Predict the probability of the resonse variables
dist.plot()             # Plot the best fitted distribution (y is included if prediction is made)

Examples

Example: Quick start to find best fit for your input data
# Prints the screen:
# [distfit] >fit..
# [distfit] >transform..
# [distfit] >[norm      ] [RSS: 0.0133619] [loc=-0.059 scale=2.031] 
# [distfit] >[expon     ] [RSS: 0.3911576] [loc=-6.213 scale=6.154] 
# [distfit] >[pareto    ] [RSS: 0.6755185] [loc=-7.965 scale=1.752] 
# [distfit] >[dweibull  ] [RSS: 0.0183543] [loc=-0.053 scale=1.726] 
# [distfit] >[t         ] [RSS: 0.0133619] [loc=-0.059 scale=2.031] 
# [distfit] >[genextreme] [RSS: 0.0115116] [loc=-0.830 scale=1.964] 
# [distfit] >[gamma     ] [RSS: 0.0111372] [loc=-19.843 scale=0.209] 
# [distfit] >[lognorm   ] [RSS: 0.0111236] [loc=-29.689 scale=29.561] 
# [distfit] >[beta      ] [RSS: 0.0113012] [loc=-12.340 scale=41.781] 
# [distfit] >[uniform   ] [RSS: 0.2481737] [loc=-6.213 scale=12.281] 

Example: Plot summary of the tested distributions

After we have a fitted model, we can make some predictions using the theoretical distributions. After making some predictions, we can plot again but now the predictions are automatically included.

Example: Make predictions using the fitted distribution

Example: Test for one specific distributions

The full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html

Example: Test for multiple distributions

The full list of distributions is listed here: https://erdogant.github.io/distfit/pages/html/Parametric.html

Example: Fit discrete distribution
from scipy.stats import binom
# Generate random numbers

# Set parameters for the test-case
n = 8
p = 0.5

# Generate 10000 samples of the distribution of (n, p)
X = binom(n, p).rvs(10000)
print(X)

# [5 1 4 5 5 6 2 4 6 5 4 4 4 7 3 4 4 2 3 3 4 4 5 1 3 2 7 4 5 2 3 4 3 3 2 3 5
#  4 6 7 6 2 4 3 3 5 3 5 3 4 4 4 7 5 4 5 3 4 3 3 4 3 3 6 3 3 5 4 4 2 3 2 5 7
#  5 4 8 3 4 3 5 4 3 5 5 2 5 6 7 4 5 5 5 4 4 3 4 5 6 2...]

# Import distfit
from distfit import distfit

# Initialize for discrete distribution fitting
dist = distfit(method='discrete')

# Run distfit to and determine whether we can find the parameters from the data.
dist.fit_transform(X)

# [distfit] >fit..
# [distfit] >transform..
# [distfit] >Fit using binomial distribution..
# [distfit] >[binomial] [SSE: 7.79] [n: 8] [p: 0.499959] [chi^2: 1.11]
# [distfit] >Compute confidence interval [discrete]

Example: Make predictions on unseen data for discrete distribution

Example: Generate samples based on the fitted distribution

Contributors

Setting up and maintaining distfit has been possible thanks to users and contributors. Thanks:

Citation

Please cite distfit in your publications if this is useful for your research. See column right for citation information.

Maintainer

  • Erdogan Taskesen, github: erdogant
  • Contributions are welcome.
  • If you wish to buy me a Coffee for this work, it is very appreciated :)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

distfit-1.5.1.tar.gz (29.1 kB view details)

Uploaded Source

Built Distribution

distfit-1.5.1-py3-none-any.whl (28.2 kB view details)

Uploaded Python 3

File details

Details for the file distfit-1.5.1.tar.gz.

File metadata

  • Download URL: distfit-1.5.1.tar.gz
  • Upload date:
  • Size: 29.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for distfit-1.5.1.tar.gz
Algorithm Hash digest
SHA256 bb830eeafd59f904ac8074d4afad71f332cc8f2b19a236ed17f7c57f2025e3af
MD5 fcf442ab5bb1fb22c221a6c35b6d1a8c
BLAKE2b-256 4701fca8108bb0f86a79d2151cb6534626f14179633aa90cd314ff20f045bb66

See more details on using hashes here.

File details

Details for the file distfit-1.5.1-py3-none-any.whl.

File metadata

  • Download URL: distfit-1.5.1-py3-none-any.whl
  • Upload date:
  • Size: 28.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.4

File hashes

Hashes for distfit-1.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1b86d33aea2d30778972ffaa915528ad5c047845fbe1af4fab33f5cab929ddf4
MD5 07d624e27da4d92020557dfc9e552a81
BLAKE2b-256 dcfd4fefa313c15390116e1f49cd6db40a3b4e16da06854582d21447c2ddf5ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page