Skip to main content

Multiple tools and utilities for ETL pipelines and others.

Project description

Ditat ETL

Multiple tools and utilities for ETL pipelines and others.

Utils

time_it

Decorator to time function and class method. Additional text can be added.

from ditat_etl.utils import time_it

@time_it()
def f():
  '''Do something'''
f()
f time: 0.1

Url

Extension of module requests/urllib3 for Proxy usage and Bulk usage.

Url

High-level usage

from ditat_etl import url

response = url.get('https://google.com')
# You can pass the same parameters as the library requests and other special parameters.

# Check low level usage for more details.

Low-level usage

from ditat_etl.url import Url

u = Url()

We use the logging module and it is set by default with 'DEBUG'. You can change this parameter to any allowed level

u = Url(debug_level='WARNING') # Just an example

Manage your proxies

u.add_proxies(n=3) # Added 3 new proxies (not necessarily valid) to self.proxies

u.clean_proxies() # Multithreaded to validate and keep only valid proxies.
print(u.proxies)
# You can also u.proxies = [], set them manually but this is not recommended.

Main functionality

def request(
    queue: str or list,
    expected_status_code: int=200,
    n_times: int=1,
    max_retries: int=None,
    use_proxy=False,
    _raise=True,
    ***kwargs
    ):

Examples

result = u.request('https://google.com')

result = u.request(queue=['https://google.com', 'htttps://facebook.com'], use_proxy=True)

# You can also pass optional parameter valid por a requests "Request"
import json
result = u.request(queue='https://example.com', method='post', data=json.dumps({'hello': 'world'}))

Databases

Useful wrappers for databases and methods to execute queries.

Postgres

It is compatible with pandas.DataFrame interaction, either reading as dataframes and pushing to the db.

from ditat_etl.databases import Postgres

config = {
    "database": "xxxx",
    "user": "xxxx",
    "password": "xxxx",
    "host": "xxxxx",
    "port": "xxxx"
}
p = Postgres(config)

The main base function is query.

p.query(
    query_statement: list or str,
    df: bool=False,
    as_dict: bool=False,
    commit: bool=True,
    returning: bool=True,
    mogrify: bool=False,
    mogrify_tuple: tuple or list=None,
    verbose=False
)

This function is a workaround of pandas.to_sql() which drops the table before inserting. It really works like an upsert and it gives you the option to do nothing or update on the column(s) constraint.

p.insert_df_to_sql(
    df: pd.DataFrame,
    tablename: str,
    commit=True,
    conflict_on: list=None,
    do_update_columns: bool or list=False,
    verbose=False
):

This one is similar, it lets you "upsert" without necessarily having a primary key or constraint. Ideally use the previous method.

p.update_df_to_sql(
    df: pd.DataFrame,
    tablename: str,
    on_columns: str or list,
    insert_new=True,
    commit=True,
    verbose=False
):

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ditat_etl-0.0.16.tar.gz (17.0 kB view details)

Uploaded Source

Built Distribution

ditat_etl-0.0.16-py3-none-any.whl (46.7 kB view details)

Uploaded Python 3

File details

Details for the file ditat_etl-0.0.16.tar.gz.

File metadata

  • Download URL: ditat_etl-0.0.16.tar.gz
  • Upload date:
  • Size: 17.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.8.10

File hashes

Hashes for ditat_etl-0.0.16.tar.gz
Algorithm Hash digest
SHA256 a37ab0431a6b55b1da201a66a86a140af2e5628e8bcc95012268b8e93996c2df
MD5 be1d5626e640e8350632664af05b2a18
BLAKE2b-256 b7545292e32847424a5147112358590644b76f22e7d96753054c442ae7126b88

See more details on using hashes here.

Provenance

File details

Details for the file ditat_etl-0.0.16-py3-none-any.whl.

File metadata

  • Download URL: ditat_etl-0.0.16-py3-none-any.whl
  • Upload date:
  • Size: 46.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.8.10

File hashes

Hashes for ditat_etl-0.0.16-py3-none-any.whl
Algorithm Hash digest
SHA256 0aa0f006e05e339ef1763a64640d39aedd2d0a1401b95394624eb73b3c10a00a
MD5 51f6579dbc8b568546b4eada030947ed
BLAKE2b-256 95ce8a070c501c860da5122311fb61efda312f54d34d14779e80b04500c47457

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page