Skip to main content

Multiple tools and utilities for ETL pipelines and others.

Project description

Ditat ETL

Multiple tools and utilities for ETL pipelines and others.

Utils

time_it

Decorator to time function and class method. Additional text can be added.

from ditat_etl.utils import time_it

@time_it()
def f():
  '''Do something'''
f()
f time: 0.1

Url

Extension of module requests/urllib3 for Proxy usage and Bulk usage.

Url

High-level usage

from ditat_etl import url

response = url.get('https://google.com')
# You can pass the same parameters as the library requests and other special parameters.

# Check low level usage for more details.

Low-level usage

from ditat_etl.url import Url

u = Url()

We use the logging module and it is set by default with 'DEBUG'. You can change this parameter to any allowed level

u = Url(debug_level='WARNING') # Just an example

Manage your proxies

u.add_proxies(n=3) # Added 3 new proxies (not necessarily valid) to self.proxies

u.clean_proxies() # Multithreaded to validate and keep only valid proxies.
print(u.proxies)
# You can also u.proxies = [], set them manually but this is not recommended.

Main functionality

def request(
    queue: str or list,
    expected_status_code: int=200,
    n_times: int=1,
    max_retries: int=None,
    use_proxy=False,
    _raise=True,
    ***kwargs
    ):

Examples

result = u.request('https://google.com')

result = u.request(queue=['https://google.com', 'htttps://facebook.com'], use_proxy=True)

# You can also pass optional parameter valid por a requests "Request"
import json
result = u.request(queue='https://example.com', method='post', data=json.dumps({'hello': 'world'}))

Databases

Useful wrappers for databases and methods to execute queries.

Postgres

It is compatible with pandas.DataFrame interaction, either reading as dataframes and pushing to the db.

from ditat_etl.databases import Postgres

config = {
    "database": "xxxx",
    "user": "xxxx",
    "password": "xxxx",
    "host": "xxxxx",
    "port": "xxxx"
}
p = Postgres(config)

The main base function is query.

p.query(
    query_statement: list or str,
    df: bool=False,
    as_dict: bool=False,
    commit: bool=True,
    returning: bool=True,
    mogrify: bool=False,
    mogrify_tuple: tuple or list=None,
    verbose=False
)

This function is a workaround of pandas.to_sql() which drops the table before inserting. It really works like an upsert and it gives you the option to do nothing or update on the column(s) constraint.

p.insert_df_to_sql(
    df: pd.DataFrame,
    tablename: str,
    commit=True,
    conflict_on: list=None,
    do_update_columns: bool or list=False,
    verbose=False
):

This one is similar, it lets you "upsert" without necessarily having a primary key or constraint. Ideally use the previous method.

p.update_df_to_sql(
    df: pd.DataFrame,
    tablename: str,
    on_columns: str or list,
    insert_new=True,
    commit=True,
    verbose=False
):

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ditat_etl-0.0.30.tar.gz (21.9 kB view details)

Uploaded Source

Built Distribution

ditat_etl-0.0.30-py3-none-any.whl (53.5 kB view details)

Uploaded Python 3

File details

Details for the file ditat_etl-0.0.30.tar.gz.

File metadata

  • Download URL: ditat_etl-0.0.30.tar.gz
  • Upload date:
  • Size: 21.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.8.10

File hashes

Hashes for ditat_etl-0.0.30.tar.gz
Algorithm Hash digest
SHA256 511edaea84a80e8ac13759e1e3c9b440b85c6e5082f43681cadb4c09488afebe
MD5 6361f4def9e63bad1de508bb2c8537d6
BLAKE2b-256 06cfe47ddbc6e6a5ad64ae8f001e1583dc88ece47b55733f0e8cf290403d4ebe

See more details on using hashes here.

Provenance

File details

Details for the file ditat_etl-0.0.30-py3-none-any.whl.

File metadata

  • Download URL: ditat_etl-0.0.30-py3-none-any.whl
  • Upload date:
  • Size: 53.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.8.10

File hashes

Hashes for ditat_etl-0.0.30-py3-none-any.whl
Algorithm Hash digest
SHA256 f4f22cdca18c3d3ea559115d6c5c2dbe9bdc2db63079ab7bbfbdc375f67abd1f
MD5 1d35dfa133751ee4a52341ecafd4c9bd
BLAKE2b-256 65cf572e3a97df40feadde72153caf798e1e18e42af0411265fd4c44cd0215a3

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page