Skip to main content

Multiple tools and utilities for ETL pipelines and others.

Project description

Ditat ETL

Multiple tools and utilities for ETL pipelines and others.

Utils

time_it

Decorator to time function and class method. Additional text can be added.

from ditat_etl.utils import time_it

@time_it()
def f():
  '''Do something'''
f()
f time: 0.1

Url

Extension of module requests/urllib3 for Proxy usage and Bulk usage.

Url

High-level usage

from ditat_etl import url

response = url.get('https://google.com')
# You can pass the same parameters as the library requests and other special parameters.

# Check low level usage for more details.

Low-level usage

from ditat_etl.url import Url

u = Url()

We use the logging module and it is set by default with 'DEBUG'. You can change this parameter to any allowed level

u = Url(debug_level='WARNING') # Just an example

Manage your proxies

u.add_proxies(n=3) # Added 3 new proxies (not necessarily valid) to self.proxies

u.clean_proxies() # Multithreaded to validate and keep only valid proxies.
print(u.proxies)
# You can also u.proxies = [], set them manually but this is not recommended.

Main functionality

def request(
    queue: str or list,
    expected_status_code: int=200,
    n_times: int=1,
    max_retries: int=None,
    use_proxy=False,
    _raise=True,
    ***kwargs
    ):

Examples

result = u.request('https://google.com')

result = u.request(queue=['https://google.com', 'htttps://facebook.com'], use_proxy=True)

# You can also pass optional parameter valid por a requests "Request"
import json
result = u.request(queue='https://example.com', method='post', data=json.dumps({'hello': 'world'}))

Databases

Useful wrappers for databases and methods to execute queries.

Postgres

It is compatible with pandas.DataFrame interaction, either reading as dataframes and pushing to the db.

from ditat_etl.databases import Postgres

config = {
    "database": "xxxx",
    "user": "xxxx",
    "password": "xxxx",
    "host": "xxxxx",
    "port": "xxxx"
}
p = Postgres(config)

The main base function is query.

p.query(
    query_statement: list or str,
    df: bool=False,
    as_dict: bool=False,
    commit: bool=True,
    returning: bool=True,
    mogrify: bool=False,
    mogrify_tuple: tuple or list=None,
    verbose=False
)

This function is a workaround of pandas.to_sql() which drops the table before inserting. It really works like an upsert and it gives you the option to do nothing or update on the column(s) constraint.

p.insert_df_to_sql(
    df: pd.DataFrame,
    tablename: str,
    commit=True,
    conflict_on: list=None,
    do_update_columns: bool or list=False,
    verbose=False
):

This one is similar, it lets you "upsert" without necessarily having a primary key or constraint. Ideally use the previous method.

p.update_df_to_sql(
    df: pd.DataFrame,
    tablename: str,
    on_columns: str or list,
    insert_new=True,
    commit=True,
    verbose=False
):

Project details


Release history Release notifications | RSS feed

This version

0.1.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ditat_etl-0.1.1.tar.gz (27.2 kB view details)

Uploaded Source

Built Distribution

ditat_etl-0.1.1-py3-none-any.whl (59.8 kB view details)

Uploaded Python 3

File details

Details for the file ditat_etl-0.1.1.tar.gz.

File metadata

  • Download URL: ditat_etl-0.1.1.tar.gz
  • Upload date:
  • Size: 27.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for ditat_etl-0.1.1.tar.gz
Algorithm Hash digest
SHA256 99aba5da7a5a62bd26aa7f388c5170a4bc63296b38023c339c1315a478d5e761
MD5 f1a8ae228aa239f9ac27b5ea24b05ea2
BLAKE2b-256 b29ca7eafbe4a55c47749b6b3ae389f622a0e4ac8a89c0ef55f91264498a00a1

See more details on using hashes here.

Provenance

File details

Details for the file ditat_etl-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: ditat_etl-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 59.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for ditat_etl-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5fd7c3ed3b9eeaf474969dc4ce43e99a7a1b526501ae58c05b1f4e7066f2c49f
MD5 4bcf5e9751fbee86b6232ddaac4e7b61
BLAKE2b-256 77676efa97de166996665ff57c5433d76830267f2ee8e1a89f385e5d584a47a7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page